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Chapter 1

INTRODUCTION

Land mobile satellite channels are characterized by multipath fading
and shadowing which generate error bursts in the demodulated data streams. The
combination of interleaving and error control coding is used to combat the degra-
dations in data quality caused by these error bursts. Proper design of interleavers
and error control codes for such applications requires knowledge of the statistics
which characterize these error bursts.

Markov chain models have been used extensively to model error bursts
encountered on telephone lines (1]. However, limited work has been reported on
the applicability of these models to other kinds of channels. In mobile wireless
applications, the models have been used to characterize the received power levels
of a particular channel (2, 3, 4]. However, there are no current applications using
Markov chains to model the types of error bursts that occur over the land mobile
satellite channel. This thesis will introduce the types of error sequences that occur

on this type of channel and explore the applicability of different models to land

mobile satellite wireless data.

1.1 Executive Summary

The error gap distribution and the block error statistics are used to
characterize the error bursts of channels with memory. The purpose of this thesis
1s to examine the applicability of four well known finite state Markov chains to
model synthetic error bursts produced from measured power data on the Land
Mobile Satellite Channel. The selected Markov chains are generative (1] models

which means:

e The transition probabilities produce a state sequence which maps to an er-

ror digit sequence or an error gap sequence in an attempt to simulate the

transitions in real channel behavior from good to bad.



¢ The model can be used to derive relevant performance statistics after suitable

parameterization.

The motivation for using generative models is that they represent real channels
with relative simplicity. However, as the accuracy of representing the channel
is required to increase, the models require more and more states, and therefore
become computationally unwieldy and negate the purpose of using a model to
represent the channel.

The first model presented is the Gilbert model [5] which can approximate
either the error gap distribution for larger gaps or the block error probabilities.
Neither curve is modeled simultaneously with the other.

The Elliott model [6] shows slight improvement over the Gilbert model
in characterizing the block error probabilities given the error gap distribution.

The McCullough model (7] differentiates between random and bursty
errors more than other models. It can model either block error probabilities or
the error gap distribution for larger gaps. Neither curve is modeled simultaneously
with the other.

With the Fritchman model [8], the error gap distribution is modeled
more accurately than all previous models, however, the block error probabilities
cannot be characterized for the simplified model. The fully connected model can
characterize the block error probabilities. Neither curve is modeled simultaneously
with the other.

All of the models show that the characteristics of the error bursts on
the channel, the error gap distribution and the block error probabilities, can be
represented with simple Markov models. However both characteristics cannot be
modeled simultaneously with these models, suggesting more complex models may
be needed for this purpose. The model that provides the best compromise in

modeling both characteristics is the Elliott model.

1.2 Summary of Contributions

e The application of finite state Markov models used to model error bursts on
phone lines are applied to the types of error bursts associated with the Land

Mobile Satellite Channel and assessed.



¢ The error gap distribution and the block error probability curves are modeled

well individually, but both are not modeled simultaneously.

e The Elliott model i1s determined to be a reasonable comprornise in represent-

ing either the error gap distribution or the block error probabilities.



Chapter 2

DATA ACQUISITION

2.1 Overview

NASA’s Advanced Communications Technology Satellite (ACTS) pro-
vides a stationary platform ideally suited to the measurement of mobile propaga-
tion effects at K-(20 GHz) and Ka-(30 GHz) bands. JPL! has developed a proof-of-
concept breadboard mobile terminal system to operate in conjunction with ACTS
at K/Ka-band called the ACTS Mobile Terminal (AMT) [9]. Field tests conducted
during the first 7 months of 1994 using the AMT provide channel characterization
data for the K-band land-mobile satellite channel.

2.2 Experiment Description

As depicted in Figure 2.1, the system is comprised of a bent pipe prop-
agation link connecting terminals at fixed and mobile sites. The forward channel
originated at the fixed station with a 29.634 GHz pilot tone. This pilot tone was re-
ceived by ACTS, mixed to the down-link frequency of 19.914 GHz, and transmitted
on the Southern California spot beam. The forward channel offered a composite
carrier-to-noise ration C/Ny of 55.63 dB-Hz [10] and was the basis for the K-band
results.

The AMT is equipped with a small (8" x 3”) high-gain reflector antenna
[11] which tracks the satellite in azimuth for a fixed elevation angle (46° for these
experiments). The antenna is mechanically steered and acquires and tracks the
satellite over the entire 360° of azimuth with a pointing error of less than 2°.
Vehicle turn rates of up to 44° per second can be accommodated. The antenna
has a receiver gain to system temperature ratio G/T of -6 dB/K over a bandwidth
of 300 MHz. The 3 dB beam width is +9° in elevation and +6° in azimuth. The

! Jet Propulsion Laboratory, California Institute of Technoiogy, 4800 Oak Grove Drive,
Pasadena, CA 91109
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Figure 2.1: ACTS Mobile Terminal Communication Link

antenna pointing system enables the antenna to track the satellite for all practical
vehicle maneuvers.

The Data Acquition System (DAS) illustrated in Figure 2.2 measures
in-phase pilot voltage level and the non-coherent pilot power level. The in-phase
pilot voltage level was sampled at 4000 samples/second in a bandwidth of 1.5 kHz
and was used to analvze the channel characteristics presented in this thesis. The
data were stored on 5 Gbyte Exabyvte tapes for off-line evaluation. The vehicle
position. vehicle velocity, and time stamp were derived from an on-board Global

Positioning Syvstem (GPS) and updated once each second.

2.3 Data Classification

Data were collected in a variety of locations in order to characterize en-
vironments typical of mobile satellite applicaticns. In the absence of any standard
definitions for the various environmental conditions typical of land mobile satellite
channels. a set of general classifications specific to Southern California was adopted.
All runs in this measurement campaign were conducted in Pasadena, California
which presents a scasonally invariant su{)urban environment. The environments

are divided into three broad categories based on the type of roadway:

e Category I: a limited access multi-lane freeway
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Figure 2.2: AMT data acquisition system block diagram.

e Category II: a broad suburban thoroughfare lined with trees and buildings.
The tree canopies cause intermittent blockage and the buildings are either
too far removed from the road side or not tall enough to cause significant

blockage.

o Category III: a small, two-lane roadway lined with trees and buildings.
The tree canopies often cover the entire road way and buildings are close

enough to contribute to the fading process.

This description is most appropriate in this case since the type and kind
of obstructions are strongly dependent on the nature of the road. Table 2.1 shows

a summary of the environmental features of the AMT runs.

¢ i
]
. . ' 1



Table 2.1: Environmental Characteristics of AMT Propagation Runs

RUN | CAT. || DIRECTION | TERRAIN | OBSTRUCTIONS ]
020201 I || west straight { hilly none
070901 11 | south, right lane straight | flat trees’
070903 II1 || north curved | fiat trees®: canopies cover road
070905 IT || north, right lane straight | fiat trees®
070906 II1 || south curved | flat trees>: canopies cover road
070907 II || north, left lane  straight | flat trees”
070912 111 | south curved | hilly treesi: canopies cover road
070914 | 1III || north curved | hilly treesi: canopies cover road
071016 II |j north/south curved | flat trees®
071017 II || north/south curved | flat trees®
072405 II [[ east, left lane straight | hilly trees®, utility poles
072406 Il || west, left lane straight | hilly trees®, utility poles
072407 II || east, right lane  straight | fiat trees’, utility poles, bldgs
072408 I1 || west, right lane  straight | flat trees®, utility poles
072409 IT || south, right lane straight | flat trees*
072410 II || north, right lane straight | fiat trees?

72411 I1 || south, left Jane  straight | fiat trees?
072412 II || north, left lane  straight | flat trees?

2.4 Fade and Non-fade Events

Figure 2.3 shows the results for a typical run, in this case run 070906. In
this figure the received voltage level is plotted as a function of the sample aumber.
From the plot in Figure 2.3 it can be seen that the received voltage levels are not
constant, but fluctuate rapidly about a certain voltage level A, referred to as the
mean received voltage level. The mean received voltage level is the voltage level

that the receiver typically receives for a particular run when the path between

2 In order of concentration: Southern Magnolia, Fan & Date Paim, Coastal Live Oak, Cali-
fornia Pepper.

3 In order of concentration: Coastal Live Qak, Southern Magnolias, Holly Oak.

4 In order of concentration: Coastal Live Oak, Holly Oak, California Sycamore Deadora
Cedar, California Pepper.

& In order of concentration: Qak, Pine, Sycamore, Magnolia, Cedar, Eucalyptus, Palm, Cali-
fornia Pepper, Italian Cyprus.

€ In order of concentration: Italian Cyprus, Palm, California Sycamore, Deadora Cedar.

7 In order of concentration: Ficus (aka Indian Laurel Fig), Date Palm.

8 In order of concentration: Eucalyptus, Fan and Date Palm.
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Figure 2.3: Plot of the received voltage levels for run 070906.

the satellite and the receiver is unobstructed. This voltage level is used as a
reference. The value of A was chosen for each run individually to represent each
run’s unobstructed signal mean received voltage level. A summary of the values of
A chosen and used in the analysis is in Table 2.2. In terms of the power received,
the normalized received power level 4 can be obtained by

I?

SYR {2.1)

‘y:

where I is the voltage level of the pilot data. For the purposes of analysis, a more

usefnl form of ~ is its value in dB: this is simply obtained by

vap = 101og(~). {2.2)

Typical plots of «ag are shown Figures 2.5 to 2.9.

Any phase variations in the received signal are removed by the phase-
locked loop (PLL), so the degradation in received signal power is due to obstruc-
tions in the line-of-sight path between the mobile receiver and the satellite trans-
mitter. Fading is the complete or partial obstruction of the transmitted signal
caused by the absorption and scattering of the incident direct signal by roadside

trees or other obstacles in the path between the satellite and the vehicle {4]. The



Table 2.2: Values of ) for the various runs

RUN | cAT. || A (V)
020201 I 3.0
070901 | I 4.1
070903 | III 4.5
070905 | 11 5.0
070906 1 1III 4.9
- 070907 Il 5.0
070012 | Il 5.0
070914 | 1II 5.0
071016 I 5.5
071017 | 1I 6.0
072405 Il 4.0
072406 | 11 4.8
072407 Il 5.0
072408 Il 5.5
072409 | II 5.0
072410 | 1I 5.2
072411 IT 5.5
072412 11 6.0

fading in the signal power level is apparent in Figures 2.5 through 2.9. When the
received signal power level drops below a predetermined threshold level 7, a fade
event r occurs. Similarly, whenever the received signal power level is above the
predetermined threshold, a non-fade event R occurs. A good example of fading is
seen in Figure 2.4. In this Figure the received pilot power is plotted as a function
of time. As is shown, each fade event is followed by a non-fade event, followed by
another fade event and so on. In Figure 2.4 there are four fade events identified by
Ti-2,%-1,Ti, and r,;. The subscript i simply identifies the fade events. Similarly,
there are three non-fade events identified by R._;, R;, and R,,;.

Let n; be a random variable representing the duration of non-fade event
R;. Once a non-fade event occurs, there is a probability that the duration of the
event is at least n samples. The probability of a non-fade event lasting at least
n samples is simply Pr(n, > n), the complementary cumulative distribution of
n,. Similarly, f, is a random variable that represents the duration of fade event

r,. The probability of a fade event lasting at least n samples is Pr(f; > n), the
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Figure 2.4: Fade and non-fade events.

complementary cumulative distribution of f;. For the five sample runs to be used
in this thesis, the fade and non-fade durations are given in figures 2.10 through
2.19.

The average fade and non-fade durations are obtained by taking the
arithmetic average. There are N,; non-fade events and N; fade events. The

average non-fade duration, 7, is given by
/

7= (2.3)
Ny
The average fade duration f is given by
. N
T z::-!l i
The average fade and non-fade durations are given in Table 2.4 for n = —6dB and

n = —10dB. Note that in the table, by lowering the threshold level, the average
fade duration decreases. Also, in many cases, the average non-fade duration de-
creases. This is due to the larger number of level crossings that occur at the lower
threshold. There are more samples above the threshold, but due to the increased
threshold crossings, there are also more non-fade duration regions. This results in
a lower average non-fade duration, even though the total time of non-fade events

is larger.



The duration of a fade or non-fade event can be measured by samples,
distance or time. Let R, be the sample rate and N, be the number of samples
corresponding to a particular fade or non-fade event (i.e. the duration of the event
is N, samples). It is sometimes useful to think of the duration of an event in
terms of a physical distance since the receiver is mobile and fading is a spatial
phenomenon. If the receiver travels at a constant velocity v, then each sample

corresponds to a distance of
dy = — (2.5)
so that the duration of the event measured in distance is
D = Nyd,. (2.6)
Similarly, the duration of the event measured in time is

T=g (2.7)

The conversion of the sampled data into a bit stream 1s straightforward. Assuming

a bit rate of Ry, the number of bits for each sample is related to the number of
samples NN, by

My N,

(2.8)

The bit rate herein is assumed to be 10 kbps.

2.5 Generation of Synthetic Error Sequences

For the case of digital data transmission over the channel, it is desirable
to be able to model the errors that occur in order to characterize the channel. In
the sampled data that was received, only a pilot tone signal level was recorded.
Since the pilot tone contained no data, a synthetic error sequence was generated
from the pilot tone information. The error sequences were based on the observation
that, due to shadowing typical of the AMT system, the received signal is either

high enough to permit error free communication or so low that signal acquisition
is lost [12].
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Table 2.3: Average Fade and Non-fade Duration Sample Lengths for Thresholds
of -6dB and -10dB.

RUN [ catr. [f,n=-6dB [f,n=—6dB | fin=-10dB | 0,7 = -10dB
070901 | II 29 1857 12 1500
070903 | III 132 257 85 198
070905 | I 112 166 75 147
070906 | III 81 690 55 597
070907 | I 59 657 41 625
070912 | 1II 170 246 107 187
070914 | III 93 83 108 125
071016 | 1II 59 1269 43 1132
071017 [ I 47 1075 27 850
072405 [ 11 29 184 30 265
072406 [ 11 36 687 25 649
072407 | 11 162 413 117 322
072408 1 11 51 899 24 613
072409 | 1I 29 2260 15 1743
072410 | 1I 111 133 72 106
072411 | 11 41 2976 24 2318
072412 | 11 92 416 58 312

In the work done by Humpherys [13], the probability density functions
of the received signals for the various runs show that the majority of the received
signal levels are concentrated around two regions. One of the regions is the mean
received voltage level A, which corresponds to error free communication. The
other level is near zero, which is down in the noise and corresponds losing signal
acquisition. It is because of these concentrations that the above assumption is
made that the signal level is high enough to permit error free communication or
so low that signal acquisition is lost. These assumptions are necessary in order to
produce a synthetic error sequence. The ideal situation would be to have a known
digital sequence that could be compared to the received sequence. In this case, the
actual errors that occurred across the channel would be known directly, and the
generation of a synthetic error sequence would be unnecessary. However, in this
case, the only available information is the received signal levels, and therefore the
best alternative is to generate a sequence that represents the errors that occur on

this type of channel.
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With the above assumptions, the fade events are associated with error
producing states and the non-fade events are associated with error free states. The
error and error free states are used to produce the synthetic error sequence e. A

synthetic error sequence of L bits is represented by

e = epe1€2° " €L] (2-_9)
where _
. > _
€ = 0 ify2n (2.10)
b ify< n

where b € {0,1} is a binary random variable with
Pr{b=0}=Pr {b=1} =1/2. (2.11)

A synthetic error sequence e was produced for each data run.

2.6 The Error Gap Distribution and Block Error Probabilities

An error gap is defined as a string of consecutive zeros between two
ones in the error sequence. The length U of the error gap is equal to one plus
the number of zeros between the two ones. Since U/ is a random variable it has a

distribution
u(n) = Pr{U = n} (2.12)

which gives the probability that there are at least n error free bits between errors.

An alternate characterization of the error sequence is the block error
probability P(m,n) which is the probability that m errors occur in a block of n
consecutive error bits., In any particular error sequence, the total number of n-
length blocks varies directly with the total length of the error sequence L in bits.
From block to block in the error sequence, the number of errors in each block will
vary as the error and error free producing states are affected by the received signal
power levels. Also, the block being examined may start at any point in the error
sequence. Thus, the block will have a varying number of errors depending where
the block starts. Because of this, the average value of P(m,n), denoted P(m,n),

is computed for each synthetic error sequence.
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The number of errors for any block is obtained by counting the number
of errors that occur in that block. Let e, be a block of n consecutive bits in e

starting at bit e;:
e = [e.-, Cidly Cid2yeeny ei+n—l] (213)

where 1 = 0,1,--. | L —n + 1. The number of errors in block e, is given by the

Hamming weight of the block

+n-1
wa(e) = 3 e (214)
i=i
For each error sequence e, the average block error probability P(m, n) is estimated
by dividing the number of blocks e; whick contain exactly m errors by the total
number of blocks B:

e;) = m}

?(m,n) = '{ile(B

(2.15)

where m = 0,1,2,--- | n.

There are several different models that have been proposed that use
the error gap distribution and the block error probabilities to model the error
statistics of various chanmnels. The following chapters examine four of these models
and assesses their applicability to the ACTS data. The first model to be presented
is the Gilbert model.
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Chapter 3

THE GILBERT MODEL

The Gilbert model is an important starting point because it is the sim-
plest model and one on which more complicated models are based. The Gilbert
model is a two-state Markov model where each state represents a different bi-
nary symmetric channel (BSC). One channel is a clear channel, and the other is a

“noisy” channel.

3.1 The Model

The Gilbert model (5} shown in Figure 3.1 is a Markov chain containing
two states, a “good state” Sy, and a “bad state” S;. State S) represents a binary
symmetric channel where the probability of a bit error is zero, hence the noise digit
e; is always a zero. This is equivalent to a clear channel where no errors occur.
State S, represents a BSC where the probability of a bit error is 1 — &, which is
equivalent to the noise digit e; being zero with probability h.

The transition probabilities between states in this Markov chain are

represented by a state transition matrix P, where

P;j = Pr{next bit producing state = Sjjcurrent bit producing state =S5;}.
(3.1)

P12
P11 P22

P2

Figure 3.1: The Gilbert Model.
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3.2 Error Gap Distribution and Block Error Probabilities

Gilbert derived the relationship between the transition probabilities, h,
and the error gap distribution. Following the development in [5], the error gap
distribution and these relations are derived below.

Let f, denote the conditional probability that, starting in state S;, the

first return to S; will occur after n transitions(or bits):
Ja = P(87715:|5s). (3.2)

Then f; = Pp; and f, = Py Pn" 2Py, for n > 2. Making these probabilities the

coefficients of a generating function F(¢) of recurrence time probabilities,

" PnPnt
F(t)=Y_ fat"= Pnt+ =P (3.3)
The probability that the mth return to S; happens at bit n has the generating
function
DS = (F()™. (3.4)
n=1

The probability of no return to S, in k bits is P,; P;,*~'. Then the probability
s(n,m) of exactly m returns to S; in n bits (but not necessarily a return on bit n)

is
(ﬂ m) (m) + Z "_kpglpllk ! (35)

The corresponding generating function is

o0

Zs(n,m)t"=(1+ Fut )[F(t)]"‘ (3.6)

n=1
Now, starting from a one in state S;, the next one must occur at a return to state

S,;. The probability that the next one occurs at the mth return to S; and at bit n

1s

A1 - k) fi™), (3.7)
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Then, recurrence time probabilities for ones are

v(in -1} = P{O" 1)

o0

S A~ A

m=1
where v(n) = P(0"1|1). From (3.4), the generating function is V(1) = Y v(n)t".

Similarly, the probability u(n) that no one appears in the next n bits is

u(n) =) s(n,m)h™, (3.8)

m

which has the generating function

14 (Pn — Pyt
(1 = Puit)[1 = hF(2)])

From (3.3),

» — P
v@e) = leo(z) oL,

where D(t) = 1 — (Pyy + hPy)t — k(P2 — Py, )t*. Factoring the quadratic D(¢),

(3.10)

D(t) = (1 = J)(1 — Lt),

where
J = Pi+ AP+ /(P + hPy)? + 4h(Pyy — Ppy)
2
[ = Piy + hPyy — /(P11 + hPy)? + 4k( Py — Pyy)
5 X
Now, (3.10) becomes
U(t)—_—l-*-(le—Pll)t ‘] L

J—-L (l—Jt_l—Lt)'

The coefficient of ¢* for the power series U(#) is

(J+ Py — Py)J" ~ (L + Py — Py)L"

u(n) = T (3.11)
Letting A = (J + P»y — Py)/(J — L), (3.11) can be rewritten as
u(n) = AJ" + (1 - A)L". (3.12)
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Figure 3.2: Typical error gap distribution curve.

Equation (3.12) is the error gap distribution for the Gilbert model. A typical error

gap distribution curve shown in Figure 3.2 shows that there are two dominating

slopes. One is a steeper slope for smaller values of n and the other is a much less

steep slope for the larger values of n.

From the error gap distribution plot and equation (3.12), parameters
A, J,andL are found by first fitting the curve to the larger values of n by choosing
A and J. Once these are chosen, then the fit for smaller values of n is obtained by
selecting L. These values are then used to derive the value of h and the transition
probabilities Py, and P, given by
LJ

_ (1-L)Y1-J)
P, = 1200 (3.14)
and
Pa = A(J = L)+ (1 - (2R (3.15)

Using these parameters, the block error probabilities are found using a set of

recurrence relations [6]. The general form of P(m,n) for a two-state BSC Markov
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model is given by

P

Py
Si{m,n) + P + P,

P(m,n) = Py + P2 !

S'g(m,n) (316)
where Si(m,n) and S;(m,n) are given in recurrent form by
Sl(m,n)= S,(m,n— l)P]] +Sg(m,n— l)Pm (317)

and

Sg(m,ﬂ.) = Sg(m,n - l)szh <+ 51(?71,11 -_ l)Pz]h
+S(m=~1n-1)P(l-Rk)+Si(m—1,n—1)Pu(l —A). (3.18)

The initial conditions used in computing the above values for Gilbert’s model are

S](O,I) = ]
Si(1,1) = 0
S2(0,1) = &

S2(1,1) = 1-h

and
Si(m,n) = S3(m,n) =0,when m < 0 or m > n.

Using these initial conditions and a set block length n, the error gap distribution
and block error statistics for the data and the model are ready to be compared.

For the Gilbert and subsequent models, a block of length n = 64 is used.

3.3 Comparison of Gilbert Model and the Data

There are two a.ppro@ches in determining the model parameters which
best match the data.

1. Determine the values of A, J, and L which provide the closest fit for the

error gap distribution. From these parameters, block error probabilities can
be derived.
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Table 3.1: Gilbert Model Parameters Chosen to Match the Error Gap Distribution

for n = —6dB.

’ RUN I CAT. " J L I A h Py J Py
070901 | II | 0.999983 | 0.676855 | 0.002977 | 0.678 | 1.75 x 10> | 9.62 x 10~*
070903 | II1 |[ 0.999930 | 0.588964 | 0.000498 | 0.589 | 6.97 x 107> | 2.05 x 10~
070905 | II | 0.999906 | 0.622168 | 0.000450 | 0.622 [ 9.31 x 10~° | 1.70 x 10~
070006 | III || 0.999965 | 0.595634 | 0.000684 | 0.596 | 3.47 x 10~> | 2.77 x10~¢
070907 | II || 0.999947 [ 0.621582 | 0.001244 | 0.622 | 5.26 x 107> { 4.71 x 10~

70012 | III || 0.999901 | 0.5617968 | 0.000367 | 0.562 [ 9.87 x 10~> { 1.61 x 10~*
070914 | III || 0.999735 | 0.611230 | 0.000521 | 0.611 | 2.65 x 10-% [ 2.02 x 10-4
071016 | II || 0.999991 | 0.674779 | 0.000668 | 0.675 | 8.10 x 10~° | 2.18 x 10~*
071017 | 11 || 0.999993 | 0.750000 | 0.000539 | 0.750 | 6.52 x 10=® | 1.35 x 10~*
072405 | 1T || 0.999914 | 0.984838 | 0.001494 | 0.985 | 8.62 x 10~ | 2.24 x 107>
072406 | II 0.999957 | 0.628417 | 0.001708 | 0.629 | 4.23 x 10> | 6.35 x 10~*
072407 | 11 |) 0.999925 | 0.567187 | 0.000466 | 0.567 [ 7.44 x 10™° | 2.02 x 10~*
072408 | 11 |} 0.999975 | 0.628417 | 0.001135 | 0.629 [ 2.41 x 10> | 4.22 x 10~*
072409 | 1I 0.999971 | 0.628710 | 0.003114 | 0.629 | 2.87 x 107> | 1.16 x 10?3
072410 | II || 0.999856 | 0.603027 | 0.000505 [ 0.603 | 1.43 x 10=* | 2.00 x 10~*
072411 | II || 0.999952 | 0.621386 | 0.602044 | 0.622 [ 4.73 x 107> | 7.74 x 10~1
072412 | II || 0.999930 | 0.597949 | 0.000715 | 0.598 | 7.00 x 10~> | 2.88 x 10~¢

2. Determine the values of the transition probabilities and A which provide the
closest fit for the block error probabilities. Then, the error gap distribution

parameters can be derived.

The error gap distributions and the model curve fits chosen to best fit the error
gap distributions are shown in Figures 3.3, 3.5, 3.7, 3.9, and 3.11 for runs 070906,
070912, 071016, 072406, and 072411 respectively. Using mean-square error as a
measure of closeness of fit, Table 3.1 shows the error gap distribution parameters
and the associated derived transition probabilities along with A.

It can be seen from the curves that the u(n) for the model is a good
approximation to the measured data for the larger values of n, but the smaller
values of n do not fit as well. Hence this model applies more toward modeling the
probabilities of the larger gaps in the error gap distribution than the smaller ones.

Checking the derived block error statistics for this model, a block of size

n = 64 is used. Using the parameters that determine u(n), P(m,n) is shown in
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Table 3.2: Gilbert Model Parameters Chosen to Match the Block Error Probabil-
ities for n = —6dB.

[ run Jcar.] v [ L 1 A [ a Py P
070901 | II || 0.999968 | 0.522116 | 3.50 x 10—° { 0.523 | 3.17 x 10~> | 1.67 x 10~>
070903 | III [ 0.999750 | 0.4987624 | 9.78 x 10~¥ [ 0.499 | 2.50 x 10~ | 4.90 x 10~
070905 | II |} 0.999580 | 0.493197 | 1.20x 10> | 0.493 | 4.2 x 10~* | 6.06 x 10~%
070906 | III || 0.999904 | 0.4975809 | 1.62 x 10~ | .497 | 8.55 x 10~° | 8.13 x 1074
070907 | 1I |{ 0.999892 { 0.491313 | 2.34 x 107> [ 0.490 | 1.08 x 10~* [ 1.19 x 10>
070912 III || 0.999773 | 0.501307 | 7.01 x 10~* } 0.501 | 2.27 x 10~4 | 3.49 x 10~¥
070914 | III || 0.999428 | 0.501717 | 1.03x 10~ | 0.502 | 5.72 x 10~¥ [ 5.10 x 104
071016 | 11 | 0.999962 [ 0.520923 | 1.39 x 10~ | 0.520 | 3.80 x 10~ | 6.66 x 10~7
071017 | 11 [ 0.099899 [ 0.241149 [ 2.11 x 10-3 | 0.521 [ 1.01 x 10~ ] 1.60 x 10~3
072405 II [ 0.999693 | 0..496921 | 3.94 x 10~° [ 0.497 { 3.08 x 10-¥ [ 1.98 x 10~
072406 | II | 0.999926 | 0.501599 | 2.81 x 10~ [ 0.502 | 7.32 x 10~> | 1.40 x 10~3
072407 | II || 0.999845 | 0.4929315 | 7.62x 10~* | 0.493 [ 1.55 x 10-7 | 3.86 x 10~
072408 | II |[ 0.999944 | 0.502804 | 1.97 x 107> | 0.503 [ 5.60 x 107> | 9.79 x 10~¢
072409 | 1I [ 0.999972 [ 0.496521 | 4.49 x 1073 | 0.497 [ 2.81 x 10™> | 2.26 x 10~3
072410 | 1I [ 0.999554 | 0.495626 | 9.99 x 10=* | 0.495 | 4.46 x 10~ % | 5.03 x 109
072411 | II | 0.999983 [ 0.522043 | 2.09 x 10~> | 0.522 | 1.74 x 10> | 9.96 x 10~%
072412 | I [ 0.999856 | 0.502513 { 1.34x 10> | 0.502 | 1.43 x 10-¥ | 6.65 x 10~7

Figures 3.4, 3.6, 3.8, 3.10, and 3.12.

It is readily apparent from the comparison in these figures that the

Gilbert model for the block error probabilities is a conservative estimate of the
block error probabilities. For smaller values of m the curve fits are fair. But as
m increases, the “hump” in the data occurs later than the model predicts. This
implies that the Gilbert model has some limitations in its ability to accurately
model the block error probabilities for the channel given the error gap distribution.

To determine whether the Gilbert model can model P(m,n) with any
accuracy, an exhaustive search of possible values of k, P2, and P, using mean-
square error as a measure of a.écuracy to P(m,n) was performed. The values in
Table 3.2 were obtained along with the associated error gap distribution parame-
ters that would produce these corresponding values of P(m,n). A comparison of

P(m,n) and P(m,n) derived from these parameters are shown in Figures 3.13,
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3.15, 3.17, 3.19, and 3.21. The Figures show that the models, when given appro-
priate parameters, come much closer to matching P(m, n)than before. The models
vary in accuracy depending on the run, but overall, the model gives a very good
estimate of the block error probabilities. The resulting effect on the error gap
distribution by altering the state transition probabilities and A to match the block
error data is shown in Figures 3.14, 3.16, 3.18, 3.20, and 3.22. In these Figures it
is seen that by finding parameters that more closely approximate P(m,n) results
in the model’s curves of the error gap distribution values departing slightly from
the data curves.

From this it is concluded that by using the Gilbert model, u(n) for
large n can approximate the error gap distribution. Also, P(m,n) can model
the block error probabilities. But both curves cannot be modeled simultaneously.
An extension of the Gilbert model is considered next which provides some more

flexibility in modeling the block error probabilities given the error gap distribution.
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Figure 3.4: Block Error Probabilities Using the Gilbert Model with Parameters
Chosen to Match the Error Gap Distribution for Run 070906.
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Figure 3.7: Error Gap Distribution Using the Gilbert Model with Parameters
Chosen to Match the Error Gap Distribution for Run 071016.
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Figure 3.8: Block Error Probabilities Using the Gilbert Model with Parameters
Chosen to Match the Error Gap Distribution for Run 071016.
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Chosen to Match the Error Gap Distribution for Run 072406.
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Figure 3.10: Block Error Probabilities Using the Gilbert Model with Parameters
Chosen to Match the Error Gap Distribution for Run 072406.
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Figure 3.13: Block Error Probabilities Using the Gilbert Model with Parameters
Chosen to Match the Block Error Probabilities for Run 070906.
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Figure 3.14: Error Gap Distribution Using the Gilbert model with Parameters
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Figure 3.15: Block Error Probabilities Using the Gilbert Model with Parameters
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Figure 3.17: Block Error Probabilities Using the Gilbert Model with Parameters
CChosen to Match the Block Error Probabilities for Run 071016.

0
10 '—
: — Ds»
“ Gaven Mack!
0}
!
N 1
gm' 1
=

]
1
i

i) 210"

Figure 3.18: Error Gap Distribution Using the Gilbert model with Parameters
Chosen to Match the Block Error Probabilities for Run 071016.
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Figure 3.19: Block Error Probabilities Using the Gilbert Model with Parameters
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Figure 3.20: Error Gap Distribution Using the Gilbert model with Parameters
Chosen to Match the Block Error Probabilities for Run 072406.
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Figure 3.21: Block Error Probabilities Using the Gilbert Model with Parameters
Chosen to Match the Block Error Probabilities for Run 072411.

Figure 3.22: Error Gap Distribution Using the Gilbert model with Parameters
Chosen to Match the Block Error Probabilities for Run 072411.
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Chapter 4

THE ELLIOTT MODEL

The simplicity of the Gilbert model limits its ability to model simulta-
neously both the error gap distribution and the block error probabilities. Also,
in modeling either one aspect or the other, it is only partially successful as seen
in the previous chapter. The Elliott model, which is an extension of the Gilbert
model, is a two state Markov model with each state representing a binary sym-
metric channel. One channel is a “noisy” channel, which has bursty errors, while

the other is a random error channel.

4.1 The Model

Like the Gilbert Model, the Elliott model [6] shown in Figure 4.1 has
two states, a “good state” S; and a “bad state” S,. State S; is a BSC where
the probability of the noise digit e; being zero is k. State S, is a BSC where the
probability of the noise digit e; being zero is h. In this way, the model represents
a “good” state where random errors occur infrequently, and a “bad” state where
errors occur more frequently and have more of a bursty nature. The parameter k
allows this model to have a little more flexibility in producing errors. The entries

in the state transition matrix are given by (3.1).

P12
P11 P22

P2

Figure 4.1: The Elliott Model.
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4.2 The Error Gap Distribution and the Block Error Probabilities

Elliott has proposed a relationship between the transition probabilities
and the block error probabilities that is based on Gilbert's approach. First, the
error gap distribution is parameterized using (3.12) and the transition probabilities
and h are derived using (3.13), (3.14), and (3.15). Next, in determining P(m,n),
the parameter k is incorporated in an attempt to make a better fit to P(m.n). ~—

As mentioned above, the error gap distribution is modeled the same way_.__-_
as in the Gilbert model. While there will be some minor differences in the gap -
distribution due to the addition of the parameter k, it is assumed that the value of
k is close to one, and will have only a minor effect on the distribution values. Its
effect on the error gap distribution is therefore ignored. The values generated for
P(m,n), however, must include the effect of the parameter k. Note that Elliott’s
model reduces to Gilbert’s model if £ = 1.

The following block error probability equations are altered to reflect the
inclusion of k. As in the Gilbert model,

. Pn
P(m,n) = Pt P, Si(m,n) +

P1a

mSQ(m,ﬂ). (4.1)

The recurrent forms of $;(m,n) and S2(m,n) are

Sl(m,n) = Sl(m,n - 1)P11k+ S;(m,n— l)Pnk
+Sl(m - l,n - I)P]](l - k) + SQ(TTI - l,ﬂ - I)Pu(]. - k) (42)

and

Sz(m, n) = Sg(m,ﬂ - I)Pzgh + Sl(m,n - I)Pglh
' +Sa(m—=1,n=1)Pu(1 —h)+ Si(m — 1,n = 1)Pu(1 — k). (4.3)

The initial conditions are

S5:1{0,1) = &k

S1(1,1) = 1—k%

S2(0,1) = A

S5:(1,1) = 1-h

Si(m,n) = S;(m,n)=0,whenm < 0orm>n.
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Table 4.1: Elliott Model Parameters for the Error Gap Distribution Based on Best
Fit to the Error Gap Distribution for n = —64B.

RUN CA‘I‘.JI J L A ]

070901 11 0.999983 | 0.676855 | 0.002977
070903 { IIT | 0.999930 | 0.58896 | 0.000498
070905 | I 0.999906 | 0.622168 | 0.000450
070006 | 111 |l 0.999965 | 0.595634 | 0.000684
070907 | 1l 0.999947 | 0.621580 | 0.001244
070912 | III | 0.999901 | 0.561796 | 0.000367
070914 j III || 0.999735 | 0.611230 | 0.000521
071016 | 11 0.999991 | 0.674779 | 0.000668
071017 | 11 0.999993 | 0.750000 | 0.000539
072405 | 11 0.999914 | 0.984838 | 0.0014%4
072406 | 11 0.999957 | 0.628417 | 0.001708
072407 ] 1l 0.999925 | 0.567187 | 0.000466
0724081 11 0.900075 | 0.628417 | 0.001135
072409 | 11 0.999971 { 0.628710 | 0.003114
072410 | I 0.999856 | 0.603027 | 0.000505
072411 I 0.999952 | 0.621386 | 0.002044
072412 | II 0.999930 | 0.597949 | 0.000715

From these equations one can see that the effect of k appears in both (4.2) and in
the initial conditions.
4.3 Comparison of the Elliott Model and the Data

The following approaches are used in determining the model parameters.

1. Using the transition probabilities obtained from the Gilbert model for the

error gap distribution, find the value of k that provides a best fit to the
P(m,n) data.

2. Find parameter values of P2, Py, k, and k that best fit the block error data.

The error gap distributions used in determining Pz, P;;, and h are the same as in
section 3. For convenience, the values of J, L, and A are reproduced in Table 4.1.
Table 4.2 shows the corresponding derived parameters used to determine P{m,n}.

The plots resulting from these parameters are shown in Figures 4.3 to 4.11. With
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Table 4.2: Elliott Model Parameters for the Block Error Probabilities Based on

Best Fit to the Error Gap Distribution for 7 = —6dB.

RUN [caT. || A P2 Pay k |
070901 | II JJ 0.678] 1.75 x 10~> | 9.62 x 10-% [ 0.999999
070903 | III |f 0.589 | 6.97 x 10> | 2.05 x 10-* [ 0.999996
070905 | II |} 0.622 [ 9.31 x 10-° | 1.70 x 10~% [ 0.999984
070906 | III |} 0.596 | 3.47 x 10=° | 2.77 x10~% [ 0.999998
070907 | 1II 0.622 | 5.26 x 107> | 4.71 x 10~ | 0.999997
070912 | III [l 0.562 | 9.87 x 10~° | 1.61 x 10~% | 0.999994
070914 | III Jj 0.611 | 2.65x 10~* | 2.02 x 10~* [ 0.999999
071016 | II )| 0.675 | 8.10 x 10-° | 2.18 x 10-% | 0.999999
071017 | II [ 0.750 | 6.52 x 10~% | 1.35 x 10~¢ | 0.999997
072405 | II [/ 0.985 | 8.62 x 107> | 2.24 x 10™> | 0.517587
072406 | 1I 0.629 | 4.23 x 10> { 6.35 x 10~* | 0.999999
072407 [ II || 0.567 | 7.44 x 10> | 2.02 x 10~* [ 0.999994
072408 [ IT [ 0.629 [ 2.41 x 1075 | 4.22 x 10~* | 0.999994
072409 | II [ 0.629 [ 2.87 x 10~5 [ 1.16 x 10~ | 0.999999
072410 II [[0.603 | 1.43 x 10~%] 2.00 x 10~¥ [ 0.999999
072411} II ] 0.622 | 4.73x 107> | 7.74 x 104 | 0.999999
072412 | 11 || 0.598 [ 7.00 x 10~> | 2.88 x 10~¥ | 0.999596

the addition of the parameter k alters the values and bring the model’s block error
probabilities slightly closer to that of the data, it does not have enough of an effect
to provide a good fit. While there is slight improvement over the Gilbert model,
it is not enough to make a significant difference in the curves. Again the values of
P(m,n) are approximated well only for the smaller values of m.

As in chapter 3, there are model parameters that do fit the block error
statistics better than those values derived from the parameters used to model the
error gap distribution curves. These values for the Elliott model are given in Table
4.3 with the corresponding derived parameters for the error gap distribution given
in Table 4.4.

Figures 4.12, 4.14, 4.16, 4.18, and 4.20 show the results of trying to
find a best fit to the curves for P(m,n). The corresponding error gap distribution
curves are given in Figures 4.13, 4.13, 4.17, 4.19, and 4.21.

These plots show that choosing appropriate parameters for the Elliott

model results in slightly better performance than the Gilbert model. The resulting
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Table 4.3: Elliott Model Parameters for Block Error Probabilities Based on Best

Fit to the Block Error Probabilities for n = —6dB.

RUN CAT. Pys Py h k

070901 | II [ 3.16 x 1075 [ 1.84 x 10~° | 0.515 | 0.995625
070903 | III | 2.87 x10~%] 7.35x 10~* | 0.502 | 0.999998
070905 | 11 || 4.22x 10~% | 5.51 x 1074 | 0.497 | 0.999999
070906 | 111 | 8.35x 10~> | 4.25 x 10™* | 0.508 | 0.999999
070907 | II || 1.38 x 10~%| 1.18 x 10~> | 0.512 | 0.999999
070912 | III | 2.31 x 10~7} 3.74 x 10~4 [ 0.494 | 0.999999
070914 | III [ 3.84 x 10~3 | 4.01 x 10~* { 0.498 | 0.999999
071016 [ II |[ 3.25x 10~3 | 5.40 x 10> | 0.520 | 0.999999
071017 | I [ 1.15x 10~%1{ 4.40 x 10~¥ | 0.520 | 0.999999
072405 | II || 2.94 x 10~¥ [ 1.33 x 10> [ 0.518 | 0.999999
072406 | 1I 1.10x 10-9 | 2.35 x 107> | 0.523 { 0.999999
072407 | 11 1.53x 1074 3.96 x 1074 | 0.491 | 0.999998
072408 | II [ 2.90x 107> [ 2.72 x 10~* | 0.521 | 0.999998
072409 | II [ 6.00x 10~ { 1.31 x 10~% [ 0.496 | 0.999977
072410 | II | 4.48x 10-¥ [ 4.85x 10~ | 0.497 | 0.999999
072411 | 1I 2.16 x 10~3 | 2.70 x 10~> | 0.517 { 0.999939
072412 [ 11 [[1.39x10°%] 6.01 x 10~* | 0.508 | 0.999999

curves are very close to the values of P(m,n). Also, as seen in the Figures, param-
eters that give the best fit to P(m,n) result in fits to the error gap distribution
curves equivalent to the Gilbert model, as is expected.

The effect of adding the parameter k to the Gilbert model in forming
the Elliott model only provides a very small improvement in modeling P(m,n)
given the error gap distribution as described previously. This implies that the
model is limited in how well it can characterize this type of data for both the error
gap distribution and the block error probabilities using the methods outlined by
Gilbert and Elliott. However, if the derivation of the transition probability and
error probability values from the error gap distribution are not used and the model
parameter values are chosen based on minimizing the error between P(m,n) and
the derived block error probabilities, it is possible to find parameters that model the
block error statistics and still adequately characterize the error gap distribution.
This indicates that for both Gilbert and Elliott models, the method of parameter

estimation based on error gap distribution information used to derive the transition
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Table 4.4: Elliott Model Parameters for the Error Gap Distribution Based on Best

Fit to the Block Error Probabilities for n = —6dB.

RUN CAT. J L A
070901 | 1I | 0.999968 | 0.514388 | 0.003790
070903 | III 0.999713 | 0.501330 | 0.001480
070905 II 0.999578 | 0.496871 | 0.001100
070906 | III 0.999916 | 0.508292 | 0.000865
070907 II 0.999862 | 0.512238 | 0.002430
070012 | II 0.99976% | 0.494674 | 0.000741
070914 I1I 0.996158 | 0.497946 | 0.000808
071016 II 0.996747 | 0.520330 | 0.000114
071017 II 0.999885 { 0.520071 | 0.000917
072405 11 0.999706 | 0.517864 | 0.002760
072406 11 0.999881 | 0.522578 | 0.004910
072407 11 (0.999847 | 0.491140 | 0.000779
072408 Il 0.999971 | 0.520914 | 0.000568
072409 11 0.999994 | 0.496828 | 0.000260
072410 II 0.999552 | 0.497099 | 0.000966
072411 II 0.997836 | 0.517698 | 0.000056
072412 I1 0.999861 | 0.508595 | 0.001220

probabilities has its limitations in modeling the data on the channel. But if it is
desired to model only P(m,n) or the error gap distribution alone, the models can
be used successfully.

In summary, for just one of the two curves, the error gap distribution or
P(m,n), this model does a good job characterizing the error gap distribution, par-
ticularly the longer gap distributions. It also does an excellent job of characterizing

the block error probabilities.

46



\

10 ¢
i -
. |—0a'-|
‘ - - Eswoft moge
'°.IE
= P
: |
:
>
3
§
F]
8 !
9
12 :\\“\\‘_‘
: s -
e ST
1 — .
m‘l—_.. . j
a 05 * 1e 2 25 3 1% 4 43
. bals) ‘10

Figure 1.2: Error Gap Distribution Using the Elliott model with Parameters Cho-
sen to Match the Error Gap Distribution for Run 070906 for n = —6dB.

10’ —
19 [
.

Prob sbdity of octumemce

] H 10 15 20 2% kY [ [ [ £
Numbed of emors w # Block of ogth &4

Figure 4.3: Block error probahilities using the Elliott model with parameters cho-
sen to match the error gap distribution for Run 070906 for n = —6dB.
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Figure 4.5: Block error probabilities using the Elliott model with parameters cho-
sen to match the error gap distribution for Run 070912 for 7 = ~645.
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Figure 4.7: Block error probabilities using the Elliott model with parameters cho-
sen 1o match the error gap distribution for Run 071016 for n = ~6dB.
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Figure 4.16: Block Error Probabilities Using the Elliott Model with Parameters
Chosen to Match the Block Error Probabilities for Run 071016 for n = —6dB.
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Figure 4.17: Error gap distribution using the Elliott model with parameters chosen
to match the block error probabilitics for Run ¢71016 for n = —6dB.
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Figure 4.20: Block Error Probabilities Uising the Elliott Model with Parameters
Chosen to Match the Block Error Probabilities for Run 072411 for n = —6d8.
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Chapter 5

THE MCCULLOUGH MODEL

The McCullough model is the generalization of both the Gilbert and
Elliott models. In these earlier models, the transition probability between states is
independent of whether an error occurs or not. For this model, this assumption is
removed so that the transition between states is allowed only after an error occurs.
With this added structure, the resulting model is termed the “binary regenerative
channel” [7].

5.1 The Model

McCullough’s general Markov channel model is shown in Figure 5.1

where

s(n) = (1or2)

S,(n) = error state for the nth error digit
Z = the error digit, 1 for error and 0 for no error
p; = Prob{S,n) = jISsn-1) = 7, Znoy = 0}
gi; = Prob{S,(n) = j1S,(a=1) = t, Znoy = 1}

P, = Prob{Z, = 1|S,n) = i} = average error probability of state i.

This model is a generalization of thé previous models. In this model, the transition
probabilities between states now depend on whether or not an error occurs in that
state. By setting p;2 = ¢z and p2; = g21, the model reduces to the Elliott model,
where state transitions are independent of whether or not an error occurs.

By setting p;; = 6,;, the Kronecker delta, the “binary regenerative chan-
nel” is formed, which allows transitions between states only after an error bit has
occurred. This is based on the idea that the only information available about the
channel comes from the occurrence of errors [7]. Therefore, switching between
states is said to occur only after an error. If this assumption is made, then the

model reduces to the one in Figure 5.2.
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Figure 5.1: General two-state Markov Model.

Figure 5.2: McCullough’s Binary Regenerative Channel.
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5.2 The Error Gap Distribution and Block Error Probabilities

The error gap distribution for the McCullough model, u(n), is the sum
of weighted exponentials, similar in form to the earlier models. Following the
method in [7], this is derived below.

First, the basic equations for an independent error process are derived.
Let P be the probability that any digit is in error. The error sequence then contains
a one with probability P and a zero with probability 1 — P. Given an error, the
probability that the next error occurs on the kth bit is

p(k) = Prob{0*'1]1}
= Prob{0*'1}
= P(1- P}

The average error separation is

E = ) kp(k)

k=

= PY k(1- P}
k=1
1

B
The probability that the number of error free bits is greater than n is given by the

cumulative distribution
u(n) = Prob{k > n}

= 1- " plk)
k=1

= l—Pi(I—P)"“
k=
= (1-P)".

Now, let Q;, 7 = 1,2, be the unconditional probability of being in state ; at

the first digit following an error. Using the above results for independent error
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processes yields

plk) = QiPA(1 — P 4 Q2P(1 — P)F! (5.1)
z @, Qr_ 1 .
k = Fl + Fg = :': | (02)
u(n) = Qi(1 - A"+ Q1 - P)" (5.3)

for the two state model where P. is the overall average error rate. As seen in earlier
models, u(n) in equation (3.3) is the error gap distribution.

The block error probabilities P(m,n) are found using
P(m,n) = A(m,n) + A2(m,n) (5.4)

where A;(m,n) is the probability that m errors have occurred in n bits and that
the process is in state i after n bits. Using the following set of recurrence relations,

A, and A, are determined by
Ay(im,n) = Aj(m,n=1)(1 = P)+ Ai(m—-1,n—-1)Pign
-+ Ag(m -1,n- 1)P2Q21 (55)
Az(m,ﬂ) = Ag(m,fl - 1)(1 - Pg) + Ag(m _ l,ﬂ. - I)qu;:g
+ A](m - l,ﬂ - l)qulz. (56)

The initial conditions for A; and A, are

A1(0,0) = @y
A2(0,0) = Q2
Ai{m,n) = 0form >n.

As noted in (5.5) and (5.6), the probabilities ¢;; must be known in order to deter-
mine P(m,n). The transition p'robabilities between the states are determined from
the data. To determine these, each state is first classified as a burst-error state or
a random-error state. To determine whether a particular error is produced by a
burst or a random-error state, a threshold value k is chosen. If the gap between

errors is less than k, then the error is considered to be produced by the burst
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state. If the gap between errors is greater than k, then the error is considered to
be produced by the random error state.

In McCullough's model, a value of k¥ = 10 represented the threshold
between burst error and random error states. This value will be used to check the

ACTS data in the sample runs.

5.3 Comparison of the McCullough Model and the Data

To determine the applicability of this model, the following method is

used:

1. Choose a threshold k which determines whether the error ‘state causing the

error is due to a “burst error state” or a “random error state.”

2. Get the error separation for successive error gaps in the data sequence, and

classify it as either a burst error or a random error.
3. For each state i, get the average error separation, k;, = 1/P,.
4. From the sequence of states obtain Q; and the transition probabilities g;;.

5. Use the above parameters to obtain the error gap distribution and the block

error probabilities.

Based on the threshold value k = 10, which McCullough uses to characterize his
data, the model parameters are derived and placed in Table 5.1. Using these values
to plot u(n) in comparison to the measured data, the results of Figures 5.3 through
5.11 show that this model using ¥ = 10 does not come very close to matching the
curves. The two curves diverge from each other, and the model based on the given
parameters yields much lower probabilities than the data produces. Using these
parameters to determine P(m,n), the plots show a degradation in performance for
this value of & when compared to the Gilbert and Elliott models. In particular, the
overall probability values obtained using the model are much higher than the data
values. The results are seen in Figures 5.4, 5.6, 5.8, 5.10, and 5.12. It is encouraging
to see that the values of P(m,n) produced by using this model take on the general

form of P(m,n) for the different runs, in particular, the characteristic “hump”
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Table 5.1: McCullough Model Parameters Based On k = 10,7 = —6dB.

RUN | CAT. || gn g2 | & | Q | A | P |
070801 I T 0.991786 | 0.013699 | 0.991740 | 0.008260 | 0.510873 | 0.000065
070903 | 1I1 0.997688 | 0.005435 | 0.997680 | 0.002320 | 0.504467 | 0.000592
070905 11 0.997231 | 0.008115 | 0.997216 | 0.002780 | 0.502659 | 0.000930
070906 | 1II 0.996593 | 0.002817 | 0.996600 | 0.003400 | 0.502499 | 0.000201
070907 II 0.995652 | 0.004250 | 0.995652 | 0.000435 | 0.505040 | 0.000258
070912 { III 0.998002 | 0.004032 | 0.997998 | 0.002002 | 0.503224 | 0.000779
0709814 | III 0.996862 | 0.005556 | 0.996854 | 0.003150 | 0.503145 | 0.001743
071016 II 0.995449 | 0.005464 | 0.995445 | 0.004555 | 0.501682 | 0.000109
071017 11 0.994649 | 0.011628 | 0.994615 | 0.005390 | 0.501043 | 0.000119
072405 II 0.992029 | 0.003451 | 0.992065 | 0.007940 | 0.504465 | 0.000631
072406 11 0.993525 0 (0.993567 | 0.006433 | 0.502845 | 0.000169
072407 1I 0.997904 | 0.001727 | 0.997905 | 0.002100 | 0.503620 | 0.000412
072408 11 0.995127 | 0.013575 | 0.995084 | 0.004920 | 0.500528 | 0.000138
072409 II 0.992682 | 0.012195 | 0.992646 | 0.007350 | 0.501537 | 0.000048
072410 11 0.997265 { 0.005208 | 0.997258 | 0.002740 | 0.502578 | 0.001132
072411 II 0.994264 | 0.014286 | 0.994214 | 0.005786 | 0.502906 | 0.000047
072412 II 0.996851 | 0.005367 | 0.996844 | 0.003160 | 0.503137 | 0.000349

seen in all of the curves, even though the state transitions have been restricted to
occur only after errors.

The most probable cause of the poor match of the model to the data is
in the choice of k. While McCullough uses the value of £ = 10 in his model, there
is likely a better choice when analyzing other tvpes of data, such as the ACTS
data. However, there is no set method for choosing an appropriate value of & given
by McCullough. This is one of the difficulties in using this model, and will be
addressed shortly. '

The parameters of P and ) that match the error gap distribution the
closest are given by Table 5.2. Also included in the Table are the transition prob-
abilities ¢;; and ¢22. Because there are an infinite number of possible transition
probabilities to choose that yield the same steady state probabilities Q1 and Q?2,

q11 and ¢y, are chosen to give the best fit to the P(m,n) curve.

62

-

Wil BN R



Table 5.2: McCullough Model Parameters Chosen to Match Error Gap Distribu-

tion for n = —64B.

RUN | CAT. [ gn g2 | G Q. | A P,
070901 I1 0.999876 | 0.958639 { 0.997023 | 0.002977 | 0.323145 | 0.000017
070903 | III 0.999501 | 0.000283 | 0.999502 | 0.000498 | 0.411036 | 0.000069
070905 I1 0.999549 | 0.000018 | 0.999549 | 0.000045 | 0.377832 | 0.000093 .
070906 | III 0.900704 | 0.568000 | 0.999315 | 0.000684 | 0.404366 | .000034
070907 H 0.999682 | 0.777641 { 0.998756 | 0.001244 | 0.378418 | 0.000052
0709121 I 0.999632 | 0.000035 | 0.999632 | 0.000368 | 0.438203 | .000Q98.
070914 | 1II 0.999478 | 0.000054 | 0.999478 | 0.000521 | 0.388769 | 0.000265
071016 11 0.999877 | 0.817678 | 0.999331 | 0.000663 | 0.325221 | .000008
071017 Il 0.999891 | 0.79941% | 0.999461 | 0.000539 | 0.250000 { 0.000006
072405 11 0.997341 | 0.828900 | 0.999948 | 0.000051 | 0.001800 | 0.000005
072406 II 0.999722 | 0.837577 | 0.998291 { 0.001709 | 0.371583 | .000042
072407 1I 0.999603 | 0.150029 | 0.999533 | 0.000466 | 0.432813 | 0.000074
072408 11 0.999812 | 0.834972 | 0.998865 | 0.001135 | 0.371583 | 0.000024
072409 I1 0.999908 | 0.970712 | 0.996886 | 0.003114 | 0.371290 | 0.000028
072410 11 0.999494 | 0.000025 | 0.993494 | 0.000505 | 0.396973 | 0.000143
072411 II 0.999931 | 0.966222 | 0.997956 | 0.002044 | 0.378614 | .000047
072412 II 0.999579 | 0.412376 | 0.999284 | 0.000715 | 0.402051 | 0.000069

The resulting plots are seen in Figures 5.13, 5.15, 5.17, 5.19 and 5.21.
Using the corresponding transition probabilities in Table 5.2, the block error prob-
abilities are plotted in Figures 5.14, 5.16, 5.18, 5.20, and 5.22. These plots show
that matching the error gap distribution curves does not result in the matching of
the block error probabilities. In fact P(m,n) values obtained in this manner now
do worse than those obtained using both Gilbert and Elliott’s models.

The parameters that do fit the P(m,n) curves the best were found and
are presented in Table 5.3.

The five sample run block error probability curves are shown in Figures
5.23, 5.25, 5.27, 5.29, and 5.31. with the corresponding error gap distribution
curves below in Figures

As would be expected, the McCullough model does an equivalent job in
modeling the block error statistics when compared to the Gilbert or Elliott Models.
With it being more restrictive in nature (with respect to the transitions being

allowed only after an error), some of the curves show a little worse performance.
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Table 5.3: McCullough Model Parameters Chosen to Match Block Error Proba-
bilities for n = —6dB.

| RUN lCAT-“ q11 g22 [ @& | @ 5 P,

070901 [ II [[ 0.990553 0.233954 | 0.016470 | 0.983530 | 0.503795 [ 3.22 x 1010
070903 | III .998084 0.175897 | 0.348031 | 0.651969 | 0.501443 | 2.72 x 10-10
070905 | 1I 0.997680 0.034927 | 0.425552 | 0.574448 | 0.506998 { 2.89 x 1010
070906 | III 0.996833 0.225946 | 0.110316 ! 0.889684 | 0.502786 | 2.56 x 10"
070907 | 1I 0.995466 0.129568 | 0.089953 | 0.910047 | 0.509191 { 2.46 x 10~**
070012 | III [[ 0.9986169 | 0.159234 | 0.402314 | 0.597686 | 0.498854 | 2.54 x 10~
070914 | III 0.998013 0.109217 | 0.545000 | 0.455000 | 0.498464 | 2.54 x 10~ °
071016 | II 1f 0.9965864 | 0.1072376 | 0.048623 | 0.951376 | 0.498145 | 3.00 x 10~1®
071017 | 1I 0.995744 0.327693 | 0.045394 | 0.954606 | 0.497824 | 3.64 x 10~
072405 | 1T 0.992538 0.231381 0.151061 | 0.848939 | 0.503814 | 2.29 x 10-1¢
072406 { 1I 0.999636 | 6.93 x 10~!! | 0.769358 | 0.230642 | 0.497160 | 0.000155
072407 | 1I 0.998926 0.165302 | 0.401982 | 0.598018 | 0.503452 | 2.54 x 10~1'°
072408 | 1I 0.998256 0.112784 | 0.121366 | 0.878634 | 0.486798 | 3.30 x 10~ ®
072409 | 11 0.991515 0.054639 | 0.014099 | 0.985901 | 0.503670 | 3.71 x 10~1'°
072410 [ 1II 0.998061 0.158672 | 0.485162 | 0.514838 | 0.504510 | 1.97 x 10~ "°
072411 1II 0.994407 0.296454 | 0.014720 | 0.98528 | 0.507189 | 3.00 x 10-1°
072412 | 1I 0.998737 0.306878 | 0.374730 | 0.625270 | 0.488872 | 4.61 x 10~!*

The restrictions on the transition probabilities of the binary regenerative channel
model , however, result in a worse match between the model and the data for the
corresponding error gap distribution curves.

The effects on the error gap distribution, using the parameters optimiz-
ing P(m,n), are shown in Figures 5.24, 5.26, 5.28, 5.30, and 5.32. From these
plots it appears that the McCullough model for the error gap distribution in this
case is grossly inaccurate for all values of n. In some of these plots, the curve
representing the model is close to the top of the plot and is almost completely fiat.
This is due to the low probability of error in one of the states for the best fit for
the model. This is a more extreme example of how modeling P(m,n) well reduces
modeling accuracy for the error gap distribution. As seen in the earlier models,
either P(m,n) or the error gap distribution could be modeled with fair accuracy,
and fitting one curve resulted in a poorer fit of the other curve. In this model,

P(m,n) is modeled with high accuracy at the expense of modeling the error gap
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distribution. In this respect, the McCullough model is inferior to the Gilbert and
Elliott models.

As mentioned earlier, the model parameters obtained are highly de-
pendent on the threshold value of k chosen. Due to this influence of the model
parameters on the value of k, an attempt was made to find the best value of k
for each run. Using the parameters that generated the best fit to the block error
probabilities in Table 5.3, the values of k were evaluated by testing possible values
of k from 10 up to 10000 and comparing the P(m,n) values generated for each
value of k to the P(m,n) values. The best k was then chosen on the basis of
mean square error between the two curves. The results of this search are found
in Table 5.4. The corresponding plots are found in Figures 5.33, 5.39, 5.37, 5.39,
and 5.42. These plots show that even if an appropriate threshold is chosen for a
particular run, the resulting model curves still may not be able to produce a close
fit to P(m,n). The same is true for the corresponding error gap distribution plots
as seen in these Figures. This is due to a mismatch in the model and the data. The
model assumes that there is a bursty error producing state and a random error
producing state. However in the synthetic error sequence, there are no random
errors produced when the received pilot power levels are greater than the fading
threshold n. The McCullough model requires a non-zero probability of error in the
random error producing state. Otherwise, there is no way to leave that state once
it is entered.

While the McCullough can provide good fits to the block error probabil-
ities, it does not characterize corresponding fits to the error gap distributions. The
added structure of this model is too restrictive to allow accurate characterization
of the channel. The choice of a threshold for a particular run also makes the model
more complex to use since that threshold must be known beforehand, and as is
seen in the curves mentioned earlier, still does not guarantee a good fit. This is
the biggest disadvantage of using this model. In the next and final model, the
Fritchman model, a difierent type of Markov chain model is presented in which the

states in the Markov chain represent individual bits instead of binary symmetric
channels.
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Table 5.4: McCullough Model Parameters Using Best k,n = —64B.

RUN | CAT. || & qu 922 & Q2 Py P
070901 I1 740 | 0.998736 [ 0.076923 | 0.998623 | 0.001380 { 0.355509 | 0.000011
070903 II1 10 0.997688 | 0.005435 | 0.997680 | 0.002320 | 0.504467 | 0.000592
070905 I 20 ) 0.998709 | 0.013436 | 0.998693 | D.001307 | 0.498883 | 0.000439
070906 | 111 430 | 0.999414 | 0.015873 | 0.999405 ; 0.000595 | 0.465702 ! 0.000036
070907 I 460 | 0.999257 | 0.012658 | 0.999248 | 0.000752 | 0.447668 | 0.000045
070912 | III 20 0.999229 | 0.010309 | 0.999222 | 0.000778 | 0.499994 | 0.000305
070914 III 20 0.998785 | 0.000000 | 0.998786 | 0.001214 | 0.498143 | 0.000682
071016 I1 1450 | 0.999613 | 0.030303 | 0.999601 | 0.000399 | 0.434376 | 0.000010
071017 II 730 | 0.999529 | 0.021277 { 0.999519 {1 0.000481 | 0.431400 | 0.000011
072405 II 210 | 0.998469 | 0.007092 | 0.998460 | 0.001540 | 0.451716 | 0.000125
072406 II 740 | 0.998938 | 0.0000000 | 0.998939 | 0.001061 | 0.437516 | 0.000028
072407 II 40 | 0.999336 | 0.000000 | 0.999337 | 0.000663 | 0.499340 | 0.000131
072408 Ii 2000 | 0.999284 | 0.00000G [ 0.999285 | 0.000715 { 0.4183G3 [ 0.000020
072409 11 560 | 0.998636 | 0.058824 | 0.998547 | 0.001453 | 0.399390 | 0.000009
072410 II 20 | 0.998863 | 0.008299 | 0.998854 | 0.001146 | 0.498438 | 0.000477
072411 II 1660 | 0.999615 | 0.000000 | 0.999615 | 0.000385 | 0.452093 | 0.000044
072412 11 300 | 0.999440 | D.000000 | 0.999440 ) 0.000560 | 0.478072 | 0.000063
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Figure 5.3: Error Gap Distributioﬁ for Threshold of & = 10 for Run 070906 for

n = —6dB.

Figure 5.4: Block Error Probabilities for Threshold of & = 10 for Run 070906 for

n = —6dB.
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Figure 5.5: Error Gap Distribution for Threshold of & = 10 for Run 070912 for
n=—6dB.
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Figure 5.6: Block Error Probabilities for Threshold of & = 10 for Run 070912 for
n=—-6dB.
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Figure 5.7: Error Gap Distribution for Threshold of & = 10 for Run 071016 for
n=—6dB.

o

)
4

-
=1
- 4. L

PiobabMy of occurrence

¢} 5 10 15 20 25 30 5 44 45
Numbet o ertors i a bicck of length 64

Figure 5.8: Block Error Probabilities for Threshold of & = 10 for Run 071016 for
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Figure 5.9: Error Gap Distribution for Threshold of £ = [0 for Run 072406 for
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Figure 5.11: Error Gap Distribution for Threshold of & = 10 for Run 072411 for
n = —6dB.
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Figure 5.12: Block Error Probabilities for Threshold of & = 10 for Run 072411 for
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Figure 5.24: Error Gap Distribution with Parameters Chosen to Match the Block
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Figure 5.25: Block Error Probabilities with Parameters Chosen to Match the Block
Error Probabilities for Run 070912 for n = —6dB.
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Figure 5.27: Block Error Probabilities with Parameters Chosen to Match the Block
Error Probabilitics for Run 071016 for n = —6dB.
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Figure 5.28: Error Gap Distribution with Parameters Chosen to Match the Block
error Probabilities for Run 071016 for n = —6dB.
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Figure 5.29: Block Error Probabilities with Parameters Chosen to Match the Block
Error Probabilities for Run 072406 for n = —6dB.
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Figure 5.30: Error Gap Distribution with Parameters Chosen to Match the Block
error Probabilities for Run 072406 for 3 = —6dB.
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Figure 5.31: Block Error Probabilities with Parameters Chosen to Match the Block
Error Probabilities for Run 072411 for = —6dB.
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Figure 5.32: Error Gap Distribution with Parameters Chosen to Match the Block
error Probabilities for Run 072411 for n = —6dB.

81



Probahdny ot occurience
3

4] E] 10 1% 20 25 0 35 40 45 50
Numpber of 8Tors n & biock of ngth 64

Figure 5.33: McCullough Model Block Error Probabilities for Run 070906 with
k= 430 for n = ~6dB.
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Figure 5.34: McCullough Model Error Gap Distribution for Run 070906 with
k=430 for n = —6dB.
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Fi'gure 5.35: McCullough Model Block Error Probabilities for Run 070912 with
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Figure 5.36: McCullough Model Error Gap Distribution for Run 070912 with
c =20 for n = —6dB.
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Figure 5.37: McCullough Model Block Error Probabilities for Run 071016 with
k= 1450 for n = —6dB.
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Figure 5.38: McCullough Model Error Gap Distribution for Run 071616 with
k= 1450 for » = —6dB.
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Figure 5.39: McCullough Model Block Error Probabilities for Run 072406 with
k=740 for n = —6dB.
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Figure 5.41: McCullough Model Block Error Probabilities for Run 072411 with
k= 1660 for n = —06dB.
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Figure 5.42: McCullough Model Error Gap Distribution for Run 072411 with
k = 1660 for = —6dB.

86



Chapter 6

THE FRITCHMAN MODEL

The Fritchman model (8] takes a different approach to modeling the
data. In this~model, the states represent error bit values instead of BSC’s. In this

way, the error bits are determined directly by the state sequence.

6.1 The Model

As shown in Figure 6.1, the N states of the Fritchman model are divided
into two groups, A and B. Group A is a set of k error-free states, and group B is
a group of (N — k) error states. Let Z = {z;:1=1,2,---} represent a sequence
of states in which the transitions occur synchronously with the transmission of the
input sequence X = {z,:¢=1,2,--- }. Next, let ¢ be a mapping from the states
S =1{1,2,---} onto {0,1}, where

0 forie A
)= 6.1
#0) {1 fori€ B (&1

Using this notation, the error sequence e, can be represented by ¢(z;). This in
turn represents the errors that occur on the channel.

In an attempt to simplify the model, transitions are allowed from error-
free states to é.ny error state, but not between the error-free states themselves (see

Figure 6.1). This is assumed in order to make the model tractable.

olopolloNcle

Error-free siates

Figure 6.1: Partitioning the State Space.
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P13

Figure 6.2: Simplified Fritchman Model with One Error State.

6.2 The Error Gap Distribution

The determination of the error gap distribution using Fritchman’s finite
state Markov mode! follows the procedure outlined in [8]. First, let the discrete
collection of random variables {z,: 1 = 1,2,--- } be a stationary Markov chain with
state space S = {1,2,...,N}. The single-step and m-step transition probabilities
are denoted by p;; and p;;(m) respectively, and the corresponding N x N matrices
as P = [p;;] and P(m) = [p;;(m)]. Then for a stationary chain P(m) = P™. Also,
if {p, :7=1,2,--- ,N} are the initial probabilities, for a strictly stationary chain,

p: can be determined from P using

N
pi=Y ppifori=12..- N (6.2)
=1
where
N
Y om=1 (6.3)
=1 '
If P is restricted to be similar to a diagonal matrix and L™ = (I(i),--- ,I,(.:,)) and
R®) = (rgi),- X ,rg)) are the left and night eigenvectors of P corresponding to the

cigenvalue ), then the m-step transition probabilities can be expanded as

N
pii(m) =Y Cr{am (6.4)

v=1

where

N -1
C, = [erv):f"’] . (6.5)
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Now, referring to Figure 6.1,
P(10™)
P(1)
_ EioeB Z.‘,eA“'Z.‘mea P(zo = 10,21 =11, " ,Zm = im) 6
= E.‘oes Plro = io) (6.6)

P(0™[1) =

The numerator can be expressed as

> S P(zo = io)P(21 = 20 = io) YooY Plaa=idzee zm =im|z = 4y)

igEB 11 EA 12€EA tmEA (67)

Also, since 1,13, -+ ,#x € A, the second part of the numerator surnmation, can be
denoted as P(0™~!|z, = ¢;) where

P(Om-llzl - 1-1) - Zi:eA e Zi,.,eA PiyiaPiaiy " Pimeaim form > 2
1 for m = 1.

(6.8)

While this gives an expression in terms of the basic model parameters, a more useful
form is obtained by considering the (m—1)-step transition probability p;,;.(m—1),
which is the probability that, starting from state #,, the process will be in state ¢,
(m — 1) transitions later. In going from 1, to i,, the process can pass through any
of the states of A and B. Therefore, p,,;..(m — 1) is the sum of the probabilities of
all the state sequences that begin with state i; and end with state i,, after m — 1

transitions; that is,

Piim(m=1) = z Z Z Piyiy Piaiz *** Pipcyio

i2€AUBs€ABim€EAUB

- { D €A Dis€A" " Smimoy €4 PiiaPisis * 7 Pimoyim + Pr(S)  for m 22

1 form=1

(6.9)

where Pr(S;) represents the sums over all sequences involving states of B. In this
expression, the first term is the probability of moving from state i) to i in m — 1
transitions without passing through any of the states of B. This is denoted as
BPijim (m — 1). From (6.8) and (6.9), it is seen that

; o -1 2
PO™" |21 = 1)) ={ ‘F“““BP' ~m 1) form 22 (6.10)

form = 1.
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So, an expression for P(0™!|z; = ¢;) can be obtained from gp,,;..(m — 1), which
in turn can be obtained from the (m — 1) step transition probability by subtracting
all the terms that involve transitions through states of B.

Instead of doing the subtraction directly, the same result can be obtained
by modifying the model. In the modified model, the process is characterized by
the transition matrix ﬁ, where

P= [P“ P"B] . (6.11)
0 I

P, represents transitions among the states of A and P,g transitions from the
states of A to B. I, of course, is an identity matrix. In the original and the
modified process, P4 and Psp are the same. However, in the modified process,
transitions from states B to A are zero, i.e., an absorbing process. As a result
of this, p;, ;..(m — 1) is the same for both models when i;,t, € A. Also, for the
modified process, since the probability of a transition from A to B to A or from B
to A is zero, Pi,in(m — 1) =g pi,i,.(m — 1) when #;,1, € A. But, by definition of
P(m —1),
Pm —1) = [Byin(m - 1)]
< pr-

pr-t (6.12)
0

=] form=1

0] form > 2
I

where the elements of P]'~! are the (m—1) step transition probabilities p;, i, (m— 1)
when #;2,, € A. The probabilities gp;,.,.(m — 1) for i,i,, € A are the elements of
P77 As a result of (6.4), the elements of P71 can be written in terms of the
eigenvalues A, and left and right eigenvectors L) and R() of the transition matrix
FPa if Py is similar to a diagonal matrix. The expression so obtained is given by

S ea 6.5?:')7}:)}2‘“ form > 2

6.13
=1 form=1 ( )

BPiim(m—1) = {
where

k
C, = [Z ;:{.»)ﬁ'u)]—l.
=1
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From (6.10),
A AT Tm- :
P(O"‘-llzl = i]) = { EmeA EveA C"rix lim ’\v ' fori; €A, m 22
—_ =1
=1 for m (6.14)
and from (6.6),
k _-_— o~
PO™1) =) f(v)AT for m 2 1 (6.15)
v=1
where
R (%) Tkt }:;g; '=1'PiPi;?§")ﬁ") for m > 2
FW)=q TN e e (6.16)
:\l; "gk‘.:l';‘ form=1.

This shows that the general form of the error gap distribution for a function of an
N-state Markov chain with k error-free states is the weighted sum of at most k&
exponentials.

Similarly, for the error cluster distribution

N=k
PO™0) = Y T, (6.17)
v=1
if
—_ =(v}3{v)
- C, Z;k:] Z;V.:k-ﬁ-l ZS =k+ leipiir_(i }[l 6.18
T = (5 = (6.18)
v izk41 P
and
N=k
C.= (7L (6.19)

=1

In this case, A, are the eigenvalues of Py, the matrix representing transitions
among the error states. Here, Ff") and TEU} are the corresponding elements of the

right and left eigenvectors. Thus, the error-cluster distribution is also the weighted

sum of exponentials.

91



10! —_
<
.
-
-
Y
-
13 ‘e
107 .
H T
~
.
é ~y
N
T
10’} S 1
Y
\\
=,
~
g \\
- -\\
107 e 1
L] \\.
~
= Deta ~
-
- = Swaight ine spproximation
|°-4 i b — - n
0 F) ] [ s 10 12
nibes)

Figure 6.3: The Error-cluster Distribution.

6.3 Block Error Probabilities

A plot of a typical error-cluster distribution for the data is shown in Fig-

ure 6.3. The plot is very well approximated by a straight line. From the discussion

in the previous section, this implies that there is only a single error state in the

model(one weighted exponential). The expression for the error gap distribution

is obtained using (6.15) and (6.16). Since P, is diagonal, the eigenvalues X, of

P, are the diagonal elements py;p2z- - py-1N-1- Also, since P4 is symmetric, the

corresponding right and left eigenvectors are equal, and, for a diagonal matrix, are

==

R __;fl‘i(u)_____(Fii)z"r)=6ki:k_1’___,N_l)
fori=1,--- ,N—1, and

o~

C.;lfori:l,---,N—l.
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From (6.16),

P f) =3 > AT pw
=1

= 85, 6k.PNK

-

and from (6.15),

N=1

PO™1) = 3 P (p,,)" for m 2 1, (6.23)

L

=1
which is simply the error gap distribution u(n) by letting n = m.

The result of (6.23) is that for the special case of single-error-state mod-
els represented in Figure 6.1, the error gap distribution uniquely specifies the model
[8]. Appropriate transition probabilities can be found to find the best fit to the
u(n) curve,

Once the transition probabilities are found, the P(m,n) distribution is

derived in [14] using the recurrence relation

k N
filmyn) =D Pifimn=1)+ Y Pifi(m—1,n-1) (6.24)

i=1 1=k+1
where 1 is the state, and f;(m,n) is the probability of exactly m transitions into
the error states(in our case, there is only one) in n steps, given that the initial
state is 1. Since the initial state could be any one of the states, all possibilities can

be accounted for by setting

N
P(m,n) =Y pifi(m,n). (6.25)

=1
The value of p; is the steady state probability of state i. Also, in evaluating (6.24),

the initial conditions are

fitmyn) = 0, form>n
filmyn) = 0, forn<Qorm <0
f}(ovo) = 1.

93



6.4 Comparison of the Fritchman Mode! and the Data

The Fritchman model is evaluated using the following methods.

1. Find the values of the transition probability matrix that best fit the error gap

distribution curve. From these values, derive the block error probabilities.

2. Find the values of the transition probability matrix that best fit the block

error probabilities. From these values, compare the error gap distribution of

the data with the model.

The closest fit to the error gap distribution results in

-P070906

Pozrosr2

Foniors

P072406

and

P07241 1

[0.999792
0
0.000876

[0.993361
0
0.000924

[0.964321
0
0.000717

[0.999999
.
0.000350

[0.621006
0

0
0.999976
0.000447

0
0.999869
0.000446

0
0.999991
0.000685

0
0.999922
0.001574

0
0.999944

0.008127 0.002113 0.989760

0.000208
0.000024
0.998677
0.006639
0.000131
0.998630
0.035679 |
0.000009
0.998598
0.000001 |
0.000078
0.998076

0.378994 |
0.000056

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

. The row in each matrix gives the current state, and the column in each matrix
gives the next state. The value at each point is simply the probability of moving

from the current state to the next state.
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In Figures 6.4, 6.6, 6.8, 6.10, and 6.12 the plots of the error gap distri-
bution from both the data and the model are presented.

Unlike the earlier models in which the model for the EGD did not per-
form well for smaller values of n, the Fritchman model provides a closer approxi-
mation to the smaller and larger values of n for the two category I1I runs. However,
for the category II runs, there is only mild improvement for the smaller values of
n. The transition probability matrices for these models are

Using these parameters to solve for P(m,n), the results are shown in
Figures 6.5, 6.7, 6.9, 6.11, and 6.13.

The results show that the model values of P(m,n) are smaller than the
given data values, and the “hump” in the data is not approximated by the model
at all. Yet the model still provides better fits to P(m,n) than the Gilbert or Elliott
models given the error gap distribution.

Finding a closest fit to the values of P(m,n) yields transition probabil-
ities given by
0.977238 0 0.022762]
Forosos = 0 0.999504 0.000496 (6.31)
0.000760 0.000297 0.998943 |

0.967918 0 0.032082]
Poroorz = 0 0.999943 0.000057 (6.32)
0.003725  0.000013 0.996262

[0.970380 0 0.029620 |
Fonois = 0 0.999767 0.000233 (6.33)

0.000492  0.002183 0.997325-]

[0.968181 0  0.031819]
FPoraws = | O 0.999862 0.000138 (6.34)
0.001882 0.000336 0.997782

0.785913 0 0.214087
FPorzanr = 0 0.999866 0.000144 | . (6.35)
3.0 x 107? 0.000257 0.999743
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The results are shown in Figures 6.14, 6.16, 6.18, 6.20, and 6.22.

Again, the Fritchman model is unable to model the hump in the data
where the number of errors in the block approaches around twenty-five and greater.

Looking at the resulting error gap distributions that come from these
transition probability matrices are shown in Figures 6.15, 6.17, 6.19, 6.21, and
6.23.

The two curves, while similar in form, do not match the data. Again,
the property of being able to model u(n) or P(m,n) separately, but not simulta-
neously, appears. The biggest weakness with the Fritchman model is the inability
to model the hump in the data where the number of errors in the block approaches
twenty-five or so. This is due to the restrictions placed on the transition probabil-
ities.

In an attempt to see if the restrictions on the model, such as no tran-
sittons being allowed between error-free states, are the cause of the difficulty in
matching both curves simultaneously, or model the hump, a trial was done with
the five sample runs allowing transitions from any state to any other state. In
other words, the model is now fully connected. The results in finding P(m,n)
along with the corresponding u(n) plots are shown in Figures 6.24 through 6.33.

The transition matrices for these curves are given by

(0999904 0.000047 0.000048
Porosos = | 0.000813 0.499879 0.499307 (6.36)
0.000833 0.496596 0.502570

[0.999760 000116  0.000113
FPorooz = |0.000349 0.500826 0.498825 (6.37)
0.000353 0.502543 0.497103

-0.999961 .000020 0.000019
Poriors = [0.000685 0.519654 0.479661 (6.38)
0.000666 0.519653 0.479680
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0.999927 0.000038 0.000035
Poraaos = |0.001400 0.501972 0.496627 (6.39)
0.001406 0.501297 0.497296

0.999982 0.0000090 0.000008
FPor2a11 = 10.001027 0.521480 0.477492 (6.40)
0.000996 0.521480 0.477524

As can be seen from these plots, loosening up the restrictions on the state transi-
tions provides a significant improvement in the modeling of the block error proba-
bilities, but the error gap distribution curves are now not matched as well. There-
fore, it can be concluded that while the Fritchman model can model the error gap
distribution alone with more accuracy than previous models, it cannot model the
block error probabilities unless the model is fully connected. And if it is, then it
will not be able to model the error gap distribution as well. This characteristic

has been present throughout all the models presented.
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Figure 6.4: Fritchman Model for the Error Gap Distribution with Parameters
Chosen to Match the Error Gap Distribution for Run 070906.
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Figure 6.5: Fritchman Model for the Block Error Probabilities with Parameters
Chosen to Match the Error Gap Distribution for Run 070906.
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Figure 6.6: Fritchman Model for the Error Gap Distribution with Parameters
Chosen to Match the Error Gap Distribution for Run 070912
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Figure 6.7: Fritchman Model for the Block Error Probabilities with Parameters
Chosen 1o Match the Error GGap Distribution for Run 070912.
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Figure 6.8: Fritchman Model for the Error Gap Distribution with Parameters
Chosen to Match the Error Gap Distribution for Run 071016.
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Figure 6.9: Fritchman Model for the Block Error Probabilities with Parameters
Chosen to Match the Error Gap Distribution for Run 071016.
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Figure 6.10: Fritchman Model for the Error Gap Distribution with Parameters
Chosen to Match the Error Gap Distribution for Run 072406.
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Figure 6.11: Fritchman Model for the Block Error Probabilities with Parameters
Chosen to Match the Error Gap Distribution for Run 072406.
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Figure 6.13: Fritchman Model for the Block Error Probabilities with Parameters

Chosen to Match the Error Gap Distribution for Run 072411.
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Figure 6.14: Fritchman Model for the Block Error Probabilities with Parameters
Chosen to Match the Block Error Probabilities for Run 070906 for 4 = -6 dB.
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Figure 6.15: Fritchman Model for the Error Gap Distribution with Parameters
Chosen to Match the Block Error Probabilities for Run 070906 for = —6 dB.
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Figure 6.16: Fritchman Model for the Block Error Probabilities with Parameters
Chosen to Match the Block Error Probabilities for Run 070912 for 5 = —6 dB.
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Figure 6.17: Fritchman Model for the Error Gap Distribution with Parameters
Chosen to Match the Block Error Probabilities for Run 070912 for = —6 dB.
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Figure 6.18: Fritchman Model for the Block Error Probabilities with Parameters
Chosen to Match the Block Error Probabilities for Run 071016 for n = -6 dB.
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Figure 6.19: Fritchman Model for the Error Gap Distribution with Parameters
Chosen to Match the Block Error Probabilities for Run 071016 for n = —6 dB.
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Figure 6.20: Fritchman Model for the Block Error Probabilities with Parameters
Chosen to Match the Block Error Probabilities for Run 072406 for n = —6 dB.
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Figure 6.21: Fritchman Model for the Error Gap Distribution with Parameters
Chosen to Match the Block Error Probabilities for Run 072406 for n = —6 dB.
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Figure 6.22: Fritchman Model for the Block Error Probabilities with Parameters
Chosen to Match the Block Error Probabilities for Run 072411 for n = -6 dB.
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Figure 6.23: Fritchman Model for the Error Gap Distribution with Parameters
Chosen to Match the Block Error Probabilities for Run 072411 for n = —6 dB.
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Figure 6.24: Fully Connected Fritchman Model for the Block Error Probabilities
with Parameters Chosen to Match the Block Error Probabilities for Run 070906.
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Figure 6.25: Fully Connected Fritchman model for the Error Gap Distribution
with Parameters Chosen to Match the Block Error Probabilities for Run 070906.
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Figure 6.26: Fully Connected Fritchman Model for the Block Error Probabilities
with Parameters Chosen to Match the Block Error Probabilities for Run 070912.
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Figure 6.27: Fully Connected Fritchman model for the Error Gap Distribution
with Parameters Chosen to Match the Block Error Probabilities for Run (70912.
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Figure 6.28: Fully Connected Fritchman Model for the Block Error Probabilities
with Parameters Chosen to Match the Block Error Probabilities for Run 071016.
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Figure 6.29: Fully Connected Fritchman model for the Error Gap Distribution
with Parameters Chosen to Match the Block Error Probabilities for Run 071016.
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Figure 6.30: Fullv Connected Fritchman Model for the Block Error Probabilities
with Parameters Chosen to Match the Block Error Probabilities for Run 072406.
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Figure 6.31: Fully Connected Fritchman model for the Error Gap Distribution
with Parameters Chosen to Match the Block Error Probabilities for Run 072406.
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Figure 6.32: Fully Connected Fritchman Model for the Block Error Probabilities
with Parameters Chosen to Match the Block Error Probabilities for Run 072411.
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Figure 6.33: Fully Connected Fritchman model for the Error Gap Distribution
with Parameters Chosen to Match the Block Error Probabilities for Run 072411,
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Chapter 7

CONCLUSIONS AND SUGGESTIONS FOR FURTHER
RESEARCH

7.1 Conclusions

This thesis examined the applicability of four standard finite-state Markov
chain models in characterizing the statistics of a synthetic error sequence typical
of the Land Mobile Satellite Channel based on received signal level data collected
using the ACTS Mobile Terminal. The models focused on in this thesis all had
less than four states. While models with a larger number of states may more ac-
curately represent the error process, the increased complexity makes these models
unwieldy and limits the usefulness of such models.

The error sequence generated for this analysis was obtained using the
information from fade and non-fade events. Applicability of the models was based
on finding parameters used in fitting curves to the error gap distribution u(n) and
the average block error probabilities P(m,n).

The Gilbert model presented the simplest approach. It was a two state
Markov chain representing BSC’s where one state had a probability of bit error
of zero, and another with a probability of bit error of A. Using this model, the
larger gap distributions were approximated by u(n). Simultaneously, the derived
block error probabilities poorly approximated the P(m,n) . Finding parameters
that matched the block error probabilities resulted in good fits to P(m,n) and
u(n) that only fairly matched the gap distribution values for smaller n.

The Elliott model was an extension of the Gilbert model which made
the two states in the chain BSC’s with error probabilities of A and k. It took
advantage of the methods used to obtain parameters in the Gilbert model. The
improvement seen by using this model was that the block error probabilities were
slightly better modeled than those obtained using the Gilbert model when given

the error gap distribution.

The McCullough model was a two state Markov chain where transitions
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between states were only allowed after error bits, thus adding more structure to the
Markov chain. The errors were characterized based on a threshold that determined
whether or not the errors occuring were random or bursty. Modeling the block error
probabilities given the error gap distribution showed poorer performance over the
Gilbert and Elliott models, as did modeling the error gap distribution given the
best fit to the block error probabilities. Choosing parameters to match the block
error probabilities provided excellent fits at the expense of modeling the error gap
distribution. Based on these parameters, a threshold was chosen for each run to
determine when an error was due to a random error producing state or a bursty
error producing state. Doing so led to fair fits to both P(m,n) and error gap
distribution plots. The added structure inherent in this model is the main cause
for the poor fits. The model assumes a non-zero probability of error in the random
error producing state. However, in the synthetic error sequence, there are no
random errors produced when the received pilot power levels are greater than the
fading threshold. It is this mismatch between the data and the model that results
in poor curve fits for both curves simultaneously using the McCullough model.

The Fritchman model was a three state Markov chain where the states
represented individual bits instead of BSC’s. Two error free states and one error
state were chosen based on the error gap and error cluster distribution curves. The
resulting models of the error gap distribution outperformed all other models. How-
ever only marginal success in matching the block error probabilities was obtained.
This was due to restrictions on state transitions. With the restrictions removed,
the block error probabilities were modeled at the expense of accuracy in modeling
the error gap distribution.

In all of the models, either the error gap distribution or the block error
probabilities was characterized accurately. Characterizing one of these two resulted
in a degraded characterization of the other. None of the models were able to match
both the error gap distribution and the block error probabilities with sufficient ac-
curacy to be considered a complete model for both aspects of the channel, however

the Elliott model seems to provide the best compromise.
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7.2 Suggestions for Further Research

The models examined in this thesis were two state Markov chains that
represented two different error producing processes, and a three state mode] where
the states represented individual error bits. A Fritchman model with more than
three states, particularly including extra error states, may provide more flexibil-
ity in modeling and may better represent the synthetic error sequence statistics.
Also, the models examined in this thesis were based on a synthetic error sequence
from the data taken using ACTS. Further investigation of these types of channels
using a binary source would be of interest to further test these models. Also,
the applicability to other sources of data, such as maritime channels, are also of

interest.

115



Appendix A

COMPREHENSIVE RESULTS

A.1 Summary of Tables and Transition Probabilities

A.1.1 Tables for Gilbert, Elliott and McCullough Models
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Table A.1: Gilbert Model Parameters Chosen to Match the Error Gap Distribution

for n = —64B.

[ RUN Jcar. || J L A | Pr; Pn |
070001 | II || 0.999983 | 0.676855 | 0.002977 [ 0.678 | 1.75 x 10=> | 9.62 x 10~4
070003 | 111 || 0.999930 | 0.588964 | 0.000498 | 0.589 | 6.97 x 10=> | 2.05x 10~*
070905 | 11 || 0.999906 | 0.622168 | 0.000450 | 0.622 { 9.31 x 10> | 1.70 x 10~*
070906 | III || 0.999965 | 0.595634 | 0.000684 | 0.596 | 3.47 x 10> | 2.77 x10~*
070907 | 11 || 0.999947 | 0.621582 | 0.001244 | 0.622 | 5.26 x 107> | 4.71 x 10~*
070912 | I || 0.999901 | 0.5617968 | 0.000367 | 0.562 | 9.87 x 10~° | 1.61 x 10~*
070914 | I || 0.999735 | 0.611230 | 0.000521 | 0.611 | 2.65 x 10-% | 2.02 x 10~*
071016 | 11 | 0.999991 | 0.674779 | 0.000668 | 0.675 | 8.10 x 10~% § 2.18 x 10~*
071017 | II || 0.999993 | 0.750000 | 0.000539 | 0.750 | 6.52 x 10=% | 1.35 x 10~*
072405 | II | 0.999914 | 0.984838 | 0.001494 | 0.985 | 8.62 x 107° | 2.24 x 10>
072406 | 11 || 0.999957 | 0.628417 | 0.001708 | 0.629 | 4.23 x 10~> | 6.35 x 10~*
072407 | I || 0.999925 | 0.567187 | 0.000466 | 0.567 | 7.44 x 107> | 2.02 x 10~*
072408 | 11 | 0.999975 | 0.628417 | 0.001135 | 0.629 | 2.41 x 10~° [ 4.22 x 10~*
072409 | II || 0.999971 | 0.628710 | 0.003114 | 0.629 { 2.87 x 107" [ 1.16 x 10~>
072410 | 1II -|| 0.999856 | 0.603027 | 0.000505 | 0.603 | 1.43 x 1071 | 2.00 x 104
072411 | IT [} 0.999952 | 0.621386 | 0.002044 | 0.622 | 4.73 x 10~° | 7.74 x 10~*
072412 | II [/ 0.999930 | 0.597949 | 0.000715 | 0.598 | 7.00 x 10> | 2.88 x 10~*
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Table A.2: Gilbert Model Parameters Chosen to Match the Error Gap Distribution

for n = —104B.

L RUN ] CAT. H J ] L A h P ] P
070901 | I | 0.999643 | 0.729688 | 0.007109 | 0.731 | 3.59 x 109 | 1.92 x 10~3
070903 | IIT || 0.999933 | 0.639551 | 0.000577 | 0.640 | 6.65 x 10> { 2.08 x 10~4
070905 | II [ 0.999912 | 0.679882 | 0.000534 | 0.680 | 8.71 x 10~° [ 1.71 x 10~*
070006 | III [} 0.999964 | 0.665820 | 0.000859 | 0.666 | 3.55 x 10—> [ 2.87 x10~*
070007 | II [} 0.999961 | 0.696875 | 0.001279 | 0.697 | 3.82x 107> [ 3.88 x 10~4
070912 | IIT |} 0.999905 | 0.635742 | 0.000416 | 0.636 | 9.50 x 10~> [ 1.52 x 10~¢
070914 | III || 0.999988 | 0.637109 | 0.000362 | 0.637 [ 1.16 x 10~% | 1.32 x 10~4
071016 | II || 0.999992 | 0.730468 | 0.000660 | 0.731 | 7.35 x 10-% | 1.78 x 10~¥
071017 | II | 0.999991 [ 0.835156 | 0.000721 | 0.835 { 8.16 x 107% | 1.19 x 10~*
072405 [ II [ 0.999930 | 0.695312 | 0.001679 | 0.696 | 6.96 x 10~> | 5.12 x 16~*
072406 | II | 0.999971 | 0.740625 | 0.001492 | 0.741 | 2.88 x 10™> | 3.87 x 10™*
072407 | II | 0.999931 [ 0.595410 | 0.000467 | 0.596 | 6.82 x 10~> [ 1.89 x 10~*
072408 | IT [ 0.999976 | 0.747851 | 0.001561 | 0.748 | 2.35x 10~> | 3.94 x 10~*
072409 | 11 [ 0.999979 | 0.834179 | 0.003275 | 0.835 | 2.03 x 107> | 4.43 x 10~*
072410 | 11 | 0.999861 | 0.655468 { 0.000588 | 0.656 | 1.40 x 10~% | 2.02 x 10~*
072411 | 11 0.998816 | 0.613671 | 0.004925 | 0.615 | 1.19 x 10~ | 1.89 x 10~>
072412 | 11 || 0.999940 | 0.663085 | 0.000719 | 0.663 | 6.00 x 10~> | 2.42 x 10~%
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Table A.3: Gilbert Model Parameters Chosen to Match the Block Error Probabil-
ities for n = —6dB.

[ Ren Jear |  J [ L A h | Ra | Py
070001 | 11 [[ 0.999968 [ 0.522116 | 3.50 x 10— | 0.523 [ 3.17 x 10> | 1.67 x 103
070903 | III || 0.999750 | 0.4987624 | 9.78 x 10~% | 0.499 | 2.50 x 10=* | 4.90 x 10~7
070905 | 11 [ 0.999580 { 0.493197 | 1.20 x 107 | 0.493 | 4.2 x 10~* | 6.06 x 10~7
070906 | III |} 0.999904 | 0.4975809 | 1.62 x 107> | .497 | 9.535 x 107> [ 8.13 x 10~*
070907 | II 1 0.999892 | 0.491313 | 2.34 x 10-2 [ 0.490 | 1.08 x 10~% | 1.19 x 103
070912 [ III | 0.999773 | 0.501307 | 7.01 x 10~* [ 0.501 | 2.27 x 107¢ | 3.4% x 10~*
070914 | III [} 0.999428 [ 0.501717 | 1.03 x 10~° | 0.502 | 5.72 x 10~% | 5.10 x 10~*

1071016 | II || 0.999962 | 0.520923 | 1.39 x 10~° | 0.520 | 3.80 x 10> | 6.66 x 1077
071017 | II | 0.999899 | 0.241149 | 2.11 x 107 [ 0.521 | 1.01 x 10~% | 1.60 x 10~°
072405 | I 0.999693 | 0..496921 | 3.94 x 1073 | 0.497 [ 3.08 x 10~% | 1.98 x 1073
072406 | II [ 0.999926 [ 0.501599 | 2.81 x 10~> | 0.502 | 7.32 x 10~> | 1.40 x 1073
072407 | II || 0.999845 | 0.4929315 | 7.62 x 1074 { 0.493 | 1.55 x 10~ | 3.86 x 104
072408 | I1 [ 0.999944 | 0.502804 | 1.97 x 10~> [ 0.503 | 5.60 x 10> | 9.79 x 10~*
072409 | IT | 0.999972 | 0.496521 | 4.49 x 107> | 0.497 [ 2.81 x 10> | 2.26 x 10~3
072410y II || 0.999554 | 0.495626 { 9.99 x 10~7 | 0.495 [ 4.46 x 10~% | 5.03 x 10~*
072411 | II || 0.999983 [ 0.522043 | 2.09 x 1077 { 0.522 | 1.74 x 107> | 9.96 x 10~¢
072412 | 11 | 0.999856 | 0.502513 | 1.34 x 10=° [ 0.502 | 1.43 x 10~ | 6.65 x 10~*
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Table A.4: Gilbert Model Parameters Chosen to Match the Block Error Probabil-
ities for n = —10dB.

| .

R M am am
] ’

[ RUN CAT. L J L A [ h P Py
070901 ] 1I | 0.999962 | 0.522299 | 7.85x 1073 | 0.524 | 3.81 x 107> [ 3.75x 10~
070903 | III || 0.899696 | 0.502852 | 1.47 x 10~> | 0.503 | 3.04 x 10~% [ 7.29 x 10~*
070005 | 11 || 0.999542 | 0.496278 | 1.82 x 10~ [ 0.496 | 4.58 x 10~* | 9.14 x 10~
070906 | III || 0.999886 | 0.487534 | 2.43 x 1077 | 488 | 1.14 x 10~ [ 1.24 x 107>
070907 { 11 0.009886 | 0.498085 | 3.41 x 10~ | 0.498 | 1.14 x 10~ [ 1.71 x 10~>
070912 | 111 || 0.999682 | 0.499389 | 1.06 x 103 | 0.499 | 3.17 x 1077 [ 5.33 x 10~
070914 | 111 || 0.999556 | 0.501861 | 9.83 x 10~¥ ] 0.502 | 4.44 x 10~% | 4.89 x 10~*
071016 | I1 || 0.999533 | 0.498300 | 2.40 x 10~° | 0.498 [ 4.68 x 10~* [ 1.20 x 10~°
071017 | 11 || 0.999946 | 0.522300 | 2.81 x 10~° | 0.523 | 5.37 x 107> [ 1.34 x 10~
072405 | 11 || 0.999785 | 0.496824 | 3.68 x 107> | 0.497 | 2.15x 10™¢ | 1.85 x 10~
072406 | 11 0.099918 | 0.490546 | 3.96 x 10~> | 0.491 | 8.14 x 107> | 2.01 x 10~
072407 | U 0.999836 | 0.501693 | 8.70 x 10~¥ | 0.434 | 1.64 x 107 | 4.34 x 10~¢
072408 | 11 ] 0.999919 | 0.499296 | 4.19 x 10~ [ 0.500 | 8.10 x 10~° | 2.10 x 10~°
072409 { 1 0.999961 | 0.493516 | 9.43 x 10-° | 0.495 | 3.83x 107> | 4.77 x 10~°
072410 | 1I 0.999433 | 0497192 | 1.58 x 1073 | 0.497 | 5.67 x 1079 [ 7.95 x 1077
072411 | 11 || 0.999981 | 0.522071 | 3.04 x 10~° | 0.522 | 1.86 x 10~ [ 1.45 x 10~°
072412 | 1 || 0.998277 | 0.497166 | 1.84 x 1075 | 0.497 | 1.72x 10~% | 9.24 x 10~*
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Table A.5: Elliott Model Parameters for the Error Gap Distribution Based on Best

Fit to the Error Gap Distribution for n = —6dB.

[ rRun | cat. | J L A
070901 I1 0.999983 | 0.676855 { 0.002977
070903 | III 0.999930 | 0.58896 | 0.000498
070905 1| 0.999906 | 0.622168 | 0.000450
070906 | III 0.999965 { 0.595634 | (6.000684
070907 I1 0.999947 | 0.621580 | 0.001244
070912 | I1II 0.999901 | 0.561796 | 0.000367

, 070914 I 0.999735  0.611230 | 0.000521
071016 I1 0.999991 | 0.674779 | 0.000668
071017 | § 0.999993 | 0.750000 | 0.000539
072405 11 0.999914 | 0.984838 | 0.001494
072406 11 0.999957 | 0.628417 | 0.001708
072407 11 0.999925 | 0.567187 | 0.000466
072408 I 0.999975 | 0.628417 | 0.001135
072409 11 0.999971 | 0.628710 | 0.003114
072410 I1 0.999856 | 0.603027 | 0.000505
072411 Il 0.999952 | 0.621386 | 0.002044
072412 11 0.999430 | 0.597949 | 0.000715
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Table A.6: Elliott Model Parameters for the Error Gap Distribution Based on Best

Fit to the Error Gap Distribution for n = —104B.

RUN [caT. [ J L A
070901 I 0.999643 | 0.729688 | 0.007109
070903 | III || 0.999933 | 0.639551 | 0.000577
070905 | 1I 0.999912 | 0.679882 | 0.000534
070906 | 1II |} 0.999964 | 0.665820 | 0.000859
070907 | II 0.999961 | 0.696875 | 0.001279
070912 | III }] 0.999905 | 0.635742 | 0.000416
070914 | IIT || 0.999988 | 0.637109 | 0.000362
071016 | I 0.999992 | 0.730468 | 0.000660
071017 | I 0.999991 | 0.835156 | 0.000721

72405 | 11 0.999930 | 0.695312 | 0.001679
072406 | I 0.999971 | 0.740625 | 0.001492
072407 | Il 0.999931 | 0.595410 | 0.000467
072408 | I 0.999976 | 0.747851 | 0.001561
072409 | II 0.999979 | 0.834179 | 0.003275
072410 | Il 0.999861 | 0.655468 | 0.000588
072411 | 1II 0.998816 | 0.613671 | 0.004925
072412 | [ 0.999940 | 0.663085 | 0.000719
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Table A.7: Elliott Model Parameters for the Block Error Probabilities Based on

Best Fit to the Error Gap Distribution for = —6dB.

[ RuN Jcar. [ A | P2 Ps k |
070901 | 1II [[0.678 [ 1.75x 10~° | 9.62 x 10~% [ 0.999999
070903 | III |/ 0.589 { 6.97 x 107" | 2.05 x 10~* | 0.999996
070005 | 11 [[0.622 | 9.31 x 107> [ 1.70 x 10~? [ 0.999984
070906 | 111 |[ 0.596 | 3.47 x 107> | 2.77 x10~* | 0.999998
070907 | II [} 0.622 | 5.26 x 10=° | 4.71 x 10~* | 0.999997
0709121 III {[ 0.562 | 9.87 x 10~° [ 1.61 x 10~% | 0.999994
070014 | IIT [[0.611 | 2.65x 1077 [ 2.02 x 10~ | 0.999999
071016 | I1 || 0.675 [ 8.10 x 10~% | 2.18 x 10~% | 0.999999
071017 | II [ 0.750 [ 6.52 x 10~% | 1.35 x 10~ | 0.999997
072405 | 11 0.985 | 8.62 x 107> | 2.24 x 10~> | 0.517587
072406 | 11 0.629 | 423 x 107> | 6.35x 10~* | 0.999999
072407 | I [[0.567 | 7.44 x 1075 | 2.02 x 10~* | 0.999994
072408 | 11 |[[ 0.620 [ 2.41 x 107> ] 4.22 x 10~* | 0.999994
072409 | 11 || 0.629 | 2.87 x 107> | 1.16 x 107> | 0.999999
072410 [ 1T [ 0.603 | 1.43 x 10-% | 2.00 x 10=* | 0.999999
072411 | 11 0.622 "4.73x 1077 | 7.74 x 10~% | 0.999999
072412 | 11 [ 0.598 | 7.00 x 10> [ 2.88 x 10~% | 0.999996
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Table A.8: Elliott Model Parameters for the Block Error Probabilities Based on

Best Fit to the Error Gap Distribution for p = —10dB.

RUN |car. || A Pia Pay k
070901 | I 731 [3.59x 109 11.92x 10~3 | 0.999999
070903 | III [ 0.640 [ 6.65 x 10™> | 2.08 x 10~* | 0.999991
070905 | 11 1/ 0.680 [ 8.71 x 10~> | 1.71 x 10~* | 0.999988
070906 | III || 0.666 | 3.55 x 107> | 2.87 x10~* | 0.999995
070907 | II | 0.697 [ 3.82x 10~ { 3.88 x 107 | 0.999998
070912 | III || 0.636 [ 9.50 x 10~> | 1.52 x 10~% | 0.999988
070914 | III {1 0.637 [ 1.16 x 10~ | 1.32 x 10~ | 0.999985
071016 | 11 | 0.731 [ 7.35x107°% | 1.78 x 10~ | 0.999998
071017 | IT ] 0.835 [ 8.16 x 107 | 1.19 x 10~ | 0.999999
072405 | I 0.696 | 6.96 x 10=° | 5.12 x 1074 | 0.999997
072406 | II || 0.741 [ 2.88 x 107> { 3.87 x 10~ | 0.999999

72407 | 11 [ 0.596 | 6.82x 107> | 1.89 x 10~* | 0.999994
072408 | 11 [[0.748 } 2.35 x 107> | 3.94 x 10~* | 0.999998
072409 [ I | 0.835[2.03x 107> | 4.43 x 10™* | 0.999999

72410 | I || 0.656 | 1.40 x 10~% | 2.02 x 10~4 | 0.999988
072411 | II | 0.615 ] 1.19x 10~% [ 1.89 x 10~° | 0.999999
072412 | 11 || 0.663 | 6.00 x 1075 | 2.42 x 10~* [ 0.999995
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Table A.9: Elliott Model Parameters for Block Error Probabilities Based on Best

Fit to the Block Error Probabilities for n = —6dB.

RUN | CAT. || P Py h k
070001 | II ] 3.16 x 105 [ 1.84 x 10~3 [ 0.515 | 0.995625
070903 | 111 [ 2.87x107%} 7.35 x 10~° | 0.502 | 0.999998
070905 | 11 | 4.22x 10~° | 5.51 x 10~4 | 0.497 | 0.999999
070006 | III | 8.35x 10~° [ 4.25 x 1077 | 0.508 | 0.999999
070907 | II || 1.38x 10~%*{1.18 x 10~° | 0.512 | 0.999999
070912 | IIT [[2.31x 10=% [ 3.74 x 10~% | 0.494 | 0.999999
070014 | IIT [ 3.84 x 10~ | 4.01 x 10~* | 0.498 | 0.999999
071016 | 11 [ 3.25x 103 | 5.40 x 10~> | 0.520 | 0.999999
071017 | 1I 1.15 x 1079 | 4.40 x 107% | 0.520 | 0.999999
072405 | 11 [ 2.94x107¥[1.33x 107 | 0.518 | 0.999999
072406 | 11 | 1.19x 10~% ] 2.35 x 107> | 0.523 | 0.999999
072407 { 11 1.53x 10791 3.96 x 10~* | 0.491 | 0.999998
072408 | 11 || 2.90x 10> [ 2.72 x 1077 | 0.521 | 0.999998
072409 | II [ 6.00x 10°% [ 1.31 x 107 | 0.496 | 0.999977
072410 | 11 [[4.48x 10| 4.85 x 10~* | 0.497 | 0.999999
072411 1 [ 216x 1079|270 x 107> | 0.517 | 0.999999
072412 [ 11 [ 1.39x 104 | 6.01 x 10~% | 0.508 | 0.999999
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Table A.10: Elliott Model Parameters for the Block Error Probabilities Based on

Best Fit to the Block Error Probabilities for n = —10dB.

[ RUN [caT. [ A Pr, | P k
070801 | II 0.525 | 3.74 x 10~° | 3.62 x 10~ | 0.999997
070903 | III ][ 0.507 [ 2.90 x 10~% ] 3.62 x 10=> | 0.999999
070905 | II |/ 0.501 | 4.59 x 10~* | 8.21 x 107 | 0.999999
070906 | III | 0.506 | 1.34 x 10~% { 1.42 x10~ | 0.999999
070907 | I [/ 0.498 [ 2.69 x 107 | 1.93 x 10~* | 0.999999
070912 | II1 [ 0.496 | 2.95 x 10= | 3.46 x 10~% | 0.999999
070914 | II1 | 0.522 [ 4.12x 10~° | 7.81 x 10~¥ | 0.999999
071016 | 1I 0.526 [ 5.2 x 10~ | 1.27 x 10~ | 0.999999
071017 | 1T [/ 0.526 | 4.29 x 10~° | 1.27 x 10~ | 0.999999
072405 | I 0.526 | 2.21 x 1079 [ 1.22 x 10~3 | 0.999999
072406 | 11 [ 0.518 [ 9.56 x 107> | 1.84 x 10~ | 0.999999
072407 | 11 0.501 [ 2.35x 1074 | 1.07 x 1072 | 0.999999
072408 | 1I 0.519 [ 1.13 x 10~% | 3.22 x 10~ | 0.999999
072409 [ 11 [/ 0.495 [ 3.83 x 107> | 4.78 x 10~ | 0.999997
072410 | 11 | 0.497 [ 6.14 x 10~% | 9.77 x 10~* | 0.999999
072411 ( 1I 0.505 | 1.87 x 107 | 1.72 x 10~ | 0.999999
072412 | 1l 0.511 { 1.65 x 10~% | 7.26 x 10~% | 0.999999
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Table A.11: Elliott Model Parameters for the Error Gap Distribution Based on

Best Fit to the Block Error Probabilities for n = —6dB.

RUN | CAT. J L A
070901 11 0.999968 | 0.514388 | 0.003790
070903 | III 0.999713 | 0.501330 | 0.001480
070905 II 0.999578 | 0.496871 | 0.001100
070906 | III 0.999916 | 0.508292 | 0.000865
070907 I1 0.999862 | 0.512238 | 0.002430
070912 II1 0.999769 | 0.494674 | 0.000741
070914 HI 0.996158 | 0.497946 | ¢.000808
071016 11 0.996747 | 0.520330 | 0.000114
071017 I1 0.999885 | 0.520071 | 0.000917
072405 I1 0.999706 | 0.517864 | 0.002760
072406 I1 0.999881 | 0.522578 | 0.004910
072407 11 0.999847 | 0.491140 | 0.000779
072408 11 0.999971 | 0.520914 | 0.000568
072409 I 0.999994 { 0.496828 | 0.000260
072410 I1 0.999552 | 0.497099 | 0.000966
072411 | 11 0.997836 | 0.517698 | 0.000056
072412 I 0.999861 | 0.508595 | 0.001220
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Table A.12: Elliott Model Parameters for the Error Gap Distribution Based on

Best Fit to the Block Error Probabilities for n = —10dB.

RUN Jear.|| J | L | A |
070901 | 11 0.999962 { 0.523985 | 0.007600
070903 | III || 0.997099 j 0.506852 | 0.002240
070905 | 11 0.999541 | 0.501091 | 0.001650
070906 | III [l 0.999865 i 0.505938 | 0.002870
070907 | 1I 0.999898 | 0.520424 | 0.002400
070912 | 1III | 0.997306 | 0.498621 | 0.000589
070914 | III | 0.997050 | 0.496803 | 0.000694
071016 | 11 0.999958 | 0.522512 | 0.001640
071017 | 11 0.999947 | 0.525387 } 0.002670
072405 | 1l 0.999778 | 0.524840 } 0.002570
072406 | 11 0.999904 | 0.517693 | 0.003810
072407 | I 0.999765 | 0.500806 } 0.002140
072408 | 1T 0.999887 { 0.518126 | 0.006680
072409 | 1I 0.999961 { 0.493541 | 0.009440
072410 | II 0.999386 | 0.497184 | 0.001950
072411 | 1I 0.999981 | 0.504725 | 0.003480
072412 | 11 0.999834 { 0.510540 | 0.001480
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Table A.13: McCuliough Model Parameters Based On k& = 10,7 = —6dB.

| RUN JCaT. || aqu | ¢ Q| Q@ | A P |
070901 | II 0.991786 | 0.013699 | 0.991740 | 0.008260 | 0.510873 | 0.000065
070903 | 1II 0.997688 | 0.005435 | 0.997680 | 0.002320 | 0.504467 | 0.000592
070905 I1 0.997231 | 0.008115 | 0.997216 | 0.002780 { 0.502659 | 0.000930
070906 | IIT |} 0.996598 | 0.002817 | 0.996600 | 0.003400 | 0.502499 | 0.000201
070907 | 1 0.995652 | 0.004250 | 0.995652 | 0.000435 | 0.505040 | 0.000258
070912 | III 0.998002 | 0.004032 { 0.997998 | 0.002002 | 0.503224 | 0.000779
070914 | III 0.996862 | 0.005556 | 0.996854 | 0.003150 | 0.503145 | 0.001743
071016 | Il 0.995449 | 0.005464 | 0.995445 | 0.004555 | 0.501682 | 0.000109
071017 | 1l 0.994649 | 0.011628 { 0.994615 | 0.005390 | 0.501043 { 0.000119
072405 | 11 0.992029 | 0.003451 | 0.992065 | 0.007940 | 0.504465 | 0.000631
072406 I 0.993525 0 0.993567 | 0.006433 | 0.502845 | 0.000169
072407 | 1I 0.997904 | 0.001727 | 0.997905 | 0.002100 { 0.503620 | 0.000412
072408 | 11 0.995127 | 0.013575 | 0.995084 | 0.004920 | 0.500528 | 0.000138
072409 | 1I 0.992682 | 0.012195 | 0.992646 | 0.007350 | 0.501537 | 0.000048
072410 | 1 0.997265 | 0.005208 | 0.997258 | 0.002740 | 0.502578 | 0.001132
072411 11 0.994264 | 0.014286 | 0.994214 | 0.005786 | 0.502906 | 0.000047
072412 I 0.996851 | 0.005367 | 0.996844 | 0.003160 | 0.503137 | 0.000349
Table A.14: McCullough Model Parameters Based On & = 10,5 = —104B.
Lruy Jear. | gn | g ¢ Q: P P
070901 I [ 0.983001 | 0.024691 | 0.982957 | 0.017043 | 0.507423 | 0.000079
070903 | IIT || 0.996688 | 0.004323 | 0.996685 | 0.003315 | 0.503118 | 0.000071
070965 | 11 0.996357 | 0.006568 { 0.996347 | 0.003653 | 0.503124 | 0.000930
070906 | IH 0.995502 | 0.002639 | 0.995510 | 0.004490 | 0.502774 | 0.000211
076907 | II 0.993915 | 0.00482 | 0.993926 | 0.006074 | 0.500884 | 0.000261
070912 | III | 0.997126 { 0.004320 | 0.997125 | 0.002875 | 0.502795 | 0.000911
070914 | III 0.997126 | 0.003175 | 0.997125 | 0.002875 | 0.502795 | 0.000106
071016 II 0.994667 | 0.002793 | 0.994681 | 0.005319 | 0.506233 | 0.000106
oviolT | II 6.992055 | 0.006981 | 0.992063 | 0.007937 { 0.504388 | 0.000131
072405 | 11 0.992230 | 0.004713 | 0.992253 | 0.007747 | 0.504209 | 0.000444
072406 I 0.991431 | 0.006969 | 0.991444 | 0.008556 | 0.505792 | (0.000170
072407 | II 0.997381 [ 0.004405 | 0.997376 | 0.002624 | 0.502991 { 0.000474
072408 | 1I 0.990771 | 0.010101 | 0.990763 { 0.009247 | 0.505477 | 0.000182
072409 | I 0.984820 | 0.018349 | 0.984772 | 0.015228 | 0.504515 | 0.000136
072410 II 0.996286 | (0.004286 | 0.996284 | 0.003716 | 0.503363 | 0.001266
072411 11 0.990501 | 0.023256 | 0.990367 | 0.009633 | 0.505700 | 0.000058
072412 | 1 0.995496 | 0.00449] | 0.995509 | 0.004491 | 0.504191 { 0.000415
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Table A.15: McCullough Model Parameters Chosen to Match Error Gap Distri-

bution for n = -6 dB.

| RUN | CAT. m | g | O Q |- A P
070901 I1 0.999876 | 0.958639 | 0.997023 | 0.002977 | 0.323145 | 0.000017
070903 | IH 0.999501 | 0.000283 | 0.999502 | 0.000498 | (0.411036 | 0.000069
070905 II 0.999549 | 0.000018 | (0.999549 | 0.000045 | 0.377832 | 0.000093
0705906 | III 0.999704 | 0.568000 | 0.999315 | 0.000684 { 0.404366 | 0.000034
070907 I 0.999682 | 0.777641 | 0.998756 | 0.001244 | 0.378418 | 0.000052
070912 | III 0.999632 | 0.000035 | 0.999632 | 0.000368 | 0.438203 | 0.000098
070914 | 111 0.999478 | 0.000054 | 0.999478 | 0.000521 | 0.388769 | 0.000265
071016 I1 0.999877 | 0.817678 | 0.999331 | 0.000669 | 0.325221 | 0.000008
071017 I1 0.999891 | 0.799415 | 0.999461 | 0.000539 { 0.250000 | 0.000006

72405 I 0.997341 | 0.828900 | 0.999948 | 0.000051 | 0.001900 | 0.000005
072406 il 0.999722 | 0.837577 | 0.998291 | 0.001709 | 0.371583 | 0.000042
072407 11 0.999603 | 0.150029 | 0.999533 | 0.000466 | 0.432813 | 0.000074
072408 I 0.999812 | 0.834972 | 0.998865 | 0.001135 | 0.371583 | 0.000024
072409 11 0.999908 | 0.970712 | 0.996886 | 0.003114 | 0.371290 | 0.000028
072410 11 0.999494 | 0.000025 | 0.999494 | 0.000505 | 0.396973 | 0.000143
072411 11 0.999931 | 0.966222 | 0.997956 | 0.002044 ) 0.378614 | 0.000047
072412 Il 0.999579 | 0.412376 | 0.999284 | 0.000715 | 0.402051 | 0.000069
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Table A.16: McCullough Model Parameters Chosen to Match Error Gap Distri-
bution for 5 = —10 dB.

RUN | CAT. qu 22 & Q2 4! P |
070901 I1 0.999920 | 0.988925 { 0.992891 | 0.007109 | 0.270312 | 0.000357
070903 | 1II 0.999422 | 0.000830 | 0.999422 | 0.000577 | 0.000066 | 0.360449
070905 II 0.999469 |} 0.000011 | 0.999465 | 0.000534 | 0.320118 | 0.000087
070906 | III 0.999689 | 0.638691 | 0.999140 | 0.000860 | 0.334180C | 0.000035
070907 | II 0.999716 | 0.778722 | 0.998720 | 0.001280 | 0.303125 | 0.000038
070912 | TN 0.999583 | 0.000052 | 0.999583 | 0.000416 | 0.364258 | (0.000095
070914 | III 0.999637 | 0.000031 | 0.999637 | 0.000363 | 0.362891 | 0.000116
071016 11 0.999874 | 0.810827 | 0.999339 | 0.000660 | 0.269532 | 0.000007
071017 ! II 0.999999 | 0.999999 | 0.999278 | 0.000721 | 0.164844 | 0.000008
072405 Il 0.999512 | 0.710026 | 0.998320 | 0.001679 | 0.304687 ] 0.000069
072406 | I 0.999832 | 0.887818 | 0.998507 | 0.001492 | 0.259375 | 0.000028
072407 | 1I 0.999573 | 0.087451 | 0.999532 | 0.000046 | 0.404589 | 0.000068
072408 I 0.999817 | 0.883052 | 0.998438 | 0.001562 | 0.252148 | 0.000023
072409 | 11 0.999999 | 0.999999 | 0.996724 | 0.003275 | 0.165821 | 0.000020
072410 I 0.999411 ) 0.000028 | 0.999412 | 0.000588 | 0.344532 | 0.000140
072411 11 0.999932 | 0.986290 } 0.995074 | 0.004926 | 0.386328 | 0.001180
072412 | 11 0.999567 | 0.398398 | 0.999281 | 0.000719 | 0.336914 | 0.000060
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Table A.17: McCullough Model Parameters Chosen to Match Block Error Proba-
bilities for n = —6dB.

RUN | CAT. | a1 l 922 | Q: P P
070901 | I 0.990553 0.233954 | 0.016470 | 0.983530 | 0.503795 [ 3.22 x 10~V |
070903 | III .998084 0.175897 | 0.348031 | 0.651969 | 0.501443 | 2.72 x 10~ 'C
070905 | II 0.997680 0.034927 | 0.425552 | 0.574448 | 0.506998 | 2.89 x 10-10
070906 | 1II 0.996833 0.225946 | 0.110316 | 0.889684 | 0.502786 | 2.56 x 10~
070907 | 1I 0.995466 0.129568 | 0.089953 | 0.910047 | 0.509191 | 2.46 x 10~ **
070912 [ IIT [ 0.9986169 | 0.159234 | 0.402314 | 0.597686 | 0.498854 | 2.54 x 10~ '°
070914 | 1II 0.998013 0.109217 | 0.545000 | 0.455000 | 0.498464 | 2.54 x 10710
071016 | I1 [ 0.9965864 | 0.1072376 | 0.048623 | 0.951376 | 0.498145 | 3.00 x 10~*°
071017} Il 0.995744 0.327693 | 0.045394 | 0.954606 | 0.497824 | 3.64 x 10"
072405 | 11 0.992538 0.231381 | 0.151061 | 0.848339 | 0.503814 | 2.29 x 10~
072406 | 11 0.999636 | 6.93x 10~"" | 0.769358 | 0.230642 | 0.497160 | 0.000155

072407 { 11 0.998926 0.165302 | 0.401982 | 0.598018 | 0.503452 | 2.54 x 10~1°
072408 | I 0.998256 0.112784 | 0.121366 | 0.878634 | 0.489798 | 3.30 x 10~ '®
072409 | 11 0.991515 0.054639 | 0.014099 | 0.985901 | 0.503670 | 3.71 x 10~
072410 | 11 0.998061 0.158672 | 0.485162 | 0.514838 | 0.504510 | 1.97 x 10~1°
072411 [ 1II 0.994407 0.296454 | 0.014720 | 0.98528 | 0.507189 | 3.00 x 10~V
072412 | 11 0.998737 0.306878 | 0.374730 | 0.625270 | 0.488872 | 4.61 x 10~ "%
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Table A.18: McCullough Model Parameters Chosen to Match Block Error Proba-
bilities for n = —10dB.

[ rex JeaT. | en | ¢ @ Q2 P P,
070901 | II ] 0.978859 | 0.000005 | 0.513091 | 0.486909 [ 0.513091 | 5.49 x 10~T0
070903 | III | 0.997148 | 0.174233 | 0.307966 | 0.692034 | 0.497394 | 2.75 x 10~ "
070905 | II [ 0.996501 | 0.175192 | 0.353318 | 0.646682 | 0.504075 | 2.65 x 1010
070906 | III || 0.995302 | 0.131262 | 0.091013 | 0.908986 | 0.512912 | 4.61 x 10~*°
070907 | 11 0.993496 | 0.177991 | 0.069665 | 0.930335 | 0.502477 | 3.80 x 10-1°
070912 | TIT [ 0.997899 | 0.151717 | 0.383078 | 0.616922 | 0.501282 | 2.41 x 10-T°
070914 | III |} 0.998085 | 0.155954 | 0.490678 | 0.509322 | 0.498301 | 2.46 x 10~'?
071016 | II [ 0.995331 | 0.319681 | 0.040178 | 0.959821 [ 0.502211 | 4.79 x 1010
071017 [ 1II || 0.992791 | 0.217516 | 0.033915 | 0.966085 | 0.498737 | 1.76 x 10~ 1°
072405 [ 11 }f 0.992999 | 0.194015 | 0.116011 | 0.883989 | 0.503879 | 3.29 x 10~ 10
072406 | I1 [} 0.992456 | 0.278624 | 0.046694 | 0.953306 | 0.510138 | 2.34 x 10~
072407 | II [/ 0.998231 | 0.144657 | 0.275670 | 0.724330 | 0.501101 | 2.91 x 10~ 10
072408 | 1T | 0.992005 [ 0.205480 | 0.041981 | 0.958019 | 0.501412 | 3.52 x 10~ 10
072409 | 11 | 0.982937 | 0.404707 | 0.010328 | 0.989671 | 0.507684 | 6.37 x 10~ 11
072410 | 11 | 0.996954 | 0.160877 | 0.437181 | 0.562819 | 0.503010 | 2.47 x 10~10
72411 | 11 |[ 0.992555 | 0.062791 | 0.011904 | 0.988096 | 0.497351 [ 2.51 x 10~ 11
072412 | II [ 0.996416 | 0.191363 | 0.166239 | 0.833761 | 0.503241 | 3.55 x 10~ 10
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Table A.19: McCullough Model Parameters Using Best k,n = —6dB.

L rRuy Jear || & | gn_ | g2 | @ [ Qi P | P
070901 I 740 | 0.998736 | 0.076923 | 0.998623 | 0.001380 | 0.355509 | 0.000011
070903 { III 10 | 0.997688 | 0.005435 | 0.997680 | 0.002320 | 0.504467 | 0.000592
070905 Il 20 | 0.998709 | 0.013436 | 0.998693 | 0.001307 | 0.498883 | 0.000439
070906 | III 430 | 0.999414 | 0.015873 | 0.999405 | 0.000595 | 0.465702 | 0.000036

70907 11 460 | 0.999257 | 0.012658 | 0.999248 | 0.000752 | 0.447668 | 0.000045
070912 | TII 20 | 0.999229 | 0.010309 { 0.999222 | 0.000778 | 0.499994 | 0.000305
070914 | 1IN 20 | 0.998783 | 0.000000 | 0.998786 | 0.001214 | 0.498143 | 0.000682
071016 I1 1450 | 0.999613 | 0.030303 { 0.999601 | 0.000399 | 0.434376 | 0.000010
071017 I 730 | 0.999529 | 0.021277 | 0.999519 | 0.000481 | 0.431400 | 0.000011
072405 1| 210 | 0.998469 | 0.007092 | 0.998460 | 0.001540 | 0.451716 | 0.000125
072406 11 740 | 0.998938 | 0.000000 | 0.998939 | 0.001061 | 0.437516 | 0.000028
072407 11 40 0.999336 | 0.000000 | 0.999337 | 0.000663 | 0.499340 | 0.000131
072408 I1 2000 | 0.999284 | 0.000000 | 0.999285 | 0.000715 | 0.418303 | 0.000020
072409 I1 560 | 0.998636 | 0.058824 | 0.998547 | 0.001453 | 0.399390 | 0.000009
072410 I1 20 0.998863 | 0.008299 | 0.998854 | 0.001146 | 0.498438 | 0.000477
072411 I 1660 | 0.999615 ) 0.000000 | 0.999615 | 0.000385 | 0.452093 | 0.000014
072412 11 300 | 0.999440 | 0.000000 | 0.999440 | 0.000560 | 0.478072 | 0.000063

134



Table A.20: McCullough Model Parameters Using Best k,7 = —6dB.

| Run Jear. [ & an 922 h Q2 P | P ]
0705801 Il 350 | 0.997222 | 0.066667 | 0.997017 { 0.0029983 { 0.328675 | 0.000014
070903 | III 90 [ 0.999066 | 0.015075 | (.999053 | 0.000947 | 0.491363 | 0.000205
070905 | 1I 70 | 0.998704 | 0.004608 | 0.998700 | 0.001300 | 0.492767 | 0.000335
070906 | III 280 | 0.999215 | 0.014706 | 0.999204 | 0.000796 | 0.461322 | 0.000038
070907 I1 420 | 0.999026 | 0.013158 | ¢.999014 | 0.000986 | 0.419724 | 0.000043
070912 | III 40 | 0.999001 | 0.009009 | 0.998993 | 0.001007 | 0.496958 | 0.000322
070914 | III 20 | 0.998807 | 0.005525 | 0.998802 | 0.001197 | 0.497459 | 0.000519
071016 I1 20 | 0.997326 | 0.005525 | 0.997318 | 0.002682 | 0.499105 | 0.G600053
071017 11 660 | 0.999347 | 0.020408 | 0.999344 | 0.000666 | 0.410704 | 0.000011
072405 II 270 | 0.998536 | 0.004950 | 0.998531 | 0.001469 | 0.450783 | 0.000084
072406 I 350 | 0.998802 | 0.023810 | 0.998773 | 0.001227 | 0.428962 | 0.000025
072407 I 80 | 0.999355 | 0.005917 | 0.999352 | 0.000648 | 0.495418 | 0.000118
072408 11 550 | 0.998969 | 0.028571 | 0.998939 | 0.001061 | 0.424489 i 0.000021
072409 It 540 | 0.998305 | 0.0T1429 | 0.998167 | 0.001833 | 0.314258 | 0.000017
072410 I 30 1 0.998508 | 0.001776 | 0.998507 | 0.001493 | 0.496718 | 0.000514
072411 I 860 | 0.999206 | 0:111111 | 0.999093 | 0.000907 | 0.380066 | 0.000005
072412 I 320 | 0.99933 | 0.000000 | 0.999330 | 0.000670 | 0.466830 | 0.000063
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A.1.2 Transition Probabilities for Fritchman Model

The transition probabilities for the simplified model that give the closest

fits to the error gap distributions for 5 = —6dB are

POTOQOI =

P070903 =

F 070905 =
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FPorosr2 =
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[0.995276
0
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[0.993361
0
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0
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0
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0
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0
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0
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0
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0
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the error gap distributions for n = —10dB are
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The transition probabilities for the simplified model that give the closest fits to
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0
0.004528

[0.997963
0
0.004634

[0.998355
0
0.002053

[0.995908

0
0.005885

0.994734
0

0.015073

0
0.999883
0.000363

0
0.999992
0.000660

0
0.999991
0.000721

0
0.999930
0.601679

0
0.999971
0.001493

0
0.999931
0.000467

0
0.999976
0.001563

0
0.999979
0.003278

139

0.006368
0.000117
0.997702

-

0.001134]
0.000008
0.997802

0.001013
0.000009
0.997572J

0.002729
0.000070

0.997393

0.002037
0.000029
0.993873

-

0.001645
0.000069
0.997480

0.004092 |
0.000024
0.992552

0.005266 |
0.000021

0.981649

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)



Po:'ulo =

P072411 =

P0724:2 =

[0.994421
0
0.003055

[0.904443
0

0.067598

0.996457
0
0.002641

0
0.999860
0.000588

0
0.998813
0.004933

0

-

0.005579
0.000140
0.996357 |
0.095357)
0.001187
0.927469

0.003543

0.999940 0.000060
0.000719 0.996640

(A.32)

(A.33)

(A.34)

The transition probabilities for the simplified model that give the best fits to

P(m,n) for p = —6 dB are

P070901 =

P070903 =

PUTOS)OS =.

-P070906=

P070‘907 =

[ 0.966955
0
0.009186
[0.970926
0
0.003382

[0.986257
0
0.001637

[0.977238

0
0.000760

0.999723
0
0.002503

0
0.999948
0.002988

0
0.999236
0.001153

0
0.998400
0.001059

0
0.999504
0.000297

0
0.994230
0.001249
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0.033045
0.000052
0.987825

0.029074
0.000764
0.995464

0.013743 |
0.001600
0.997302

0.022762
0.000496
0.998943
0.000277 |
0.005770

0396247_]

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)



P0709x2 =

PO?OQH -

FPorio16 =

POTID]T =

Ponws =

P072406 -

P072407 =

£ 072408 =

[0.967918
0
0.003725

[0.970825
0
0.006000

[ 0.970380
0
0.000492

(0.999822
0
0.001236

[0.999199
0
0.005527

0.968181
| 0
0.001882

[0.999022
0
0.001822

0.999758
0

0.002899

0
0.999943
0.000013

0.999767
0.002183

0
0.984303
0.000532

0
0.998529
0.001480

0
0.999862
0.000336

0
0.982289
0.000461

0
0.972781
0.001175

141

0.032082 ]
0.000057
0.996262

0.029175
0.000043
0.993978

0.029620]
0.000233
0.997325

0.000178
0.015696
0.998231-1

0.000801 |
0.001471
0.992993

0.031819 ]
0.000138
0.997782

0.000978
0.017711
0.997717

0.000242 |
0.027219

0.995926 ]

(A.40)

(A.41)

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)



PUT240‘9 =

Punuo =

[0.946720
0
0.012784

[0.924346
0

0.094282

0.785913

0
0.999947
0.003153

0
0.999988
0.000144

0

0.053280
0.000053
0.984063

0.075654 ]
0.000012

0.905574

0.214087

(A.48)

(A.49)

Foraan = 0 0.999866 0.000144 (A.50)
3.0 x 10-% 0.000257 0.999743

0.998567 0 0.001433
FPorzaiz = 0 0.978809 0.021191} . {A.31)
0.000654 0.000591 0.998755

The transition probabilities for the simplified model that give the best fits to the
P(m,n) for 7 = —10 dB are

P070901 =

F 070903 =

P 070805 =

PO?O‘SOG =

[0.954652
0
0.026468

[0.983985
0
0.002134

0.998006
0
0.001803

[0.992056
0

0.002998

0
0.999952
0.007562

0

- 0.999248

0.000577

0
0.998027
0.000534

0
0.999884
0.000866

142

0.045348 |
0.000048
0.965970

0.016015)
0.000752
0.997289

0.001994 |
0.001973
0.997663

0.007944 |
0.000116

0.996136

(A.52)

(A.53)

(A.54)



Foresor =

Porooz =

P070914 =

PO‘?IOIS =

POTID[? =

P072405 =

P072406 =

POT2407 =

[0.999625
0
0.003408

0.957686
0
0.006537

[0.973795
0
0.003679

[6.999836
0
0.001639

[0.999833
0

0.001813

0.999451
0
0.004751

[0.999983
0
0.000099

[0.961790
0
0.002670

0
0.976691
0.001279

0
0.999974
0.000011

0
0.999942
0.000005

0
0.982809
0.000666

0
0.987311
0.000726

0
0.994348
0.0016830

0
0.978613
0.003633

0
0.999169
0.000491

143

0.000375 ]
0.023309
0.995313

0.042314 |
0.000026
0.993452

0.026205 |
0.000058
0.996315

-

0.000164
0.017191
0.997695

0.000167 |
0.012689

0.997461

0.000509
0.005652
0.993565

0.000017
0.021387
0.996268

0.038210
0.000831

0.996839

(A.56)

(A.60)

(A.61)

(A.63)



F 072408 =

F 072409 —

P072410 =

P0724|1 =

Pon-nz =

Pomgol =

F 070903 —

F 070905 —

0.981025
0
0.006131

[0.994727
0
0.015074

[0.994882
0
0.002024

[0.903834
0

0.067573

0.999952
0
0.000060

[0.999967
0.001863
0.001840

0.999718
0.000759
0.000702

[0.999640
0.000578
0.000539

0
0.999916
0.001592

0
0.999980
0.003443

0
0.982182
0.000782

0
0.999975
0.005180

0
0.986267
0.002112

0.000016
0.514052
0.514051

0.000146
0.499878
0.491899

0.000212
0.529753
0.470794

144

0.018975
0.000084
0.992275

0.005273 ]
0.000020
0.981483

0.005118 |
0.017818
0.997193

0.096166

0.000025

0'927247_1

0.060048
0.013733
0.997828

0.000016 |
0.484084
0.484108J

0.000135 |
0.499362
0.507397

0.000146
0.469667

0.528666

(A.64)

(A.63)

(A.66)

(A.67)

(A.68)

The transition probabilities for the fully connected model that give the best fits to

P(m,n) forp = —6dB are

(A.69)

(A.70)

(A.71)




POTOQOG—

PO?O‘SO? =

P070912 =

Pomeu =

Pomoie =

Pﬂ‘?lﬂl'? =

PO?’MOS =

-P072406 =

[0.999904
0.000813
0.000833

[0.999893
0.001186
0.001174

[0.999769
0.000349
0.000353

0.998076
0.000399
0.000397

[0.999961
0.000685
0.000666

[0.999940
0.000455
0.000440

[0.999706
0.001348
0.001330

[0.999927
0.001400

0.001406

0.000047
0.499879
0.496596

0.000078
0.500278
0.485413

000116
0.500826
0.502543

0.001923
0.470270
0.529344

.000020
0.519654
0.519653

0.000059
0.519764
0.528401

0.000157
0.517311
0.517311

0.000038
0.501972
0.501297
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0.000048 |
0.499307
0.502570

0.000027
0.498535
0.513412

0.000113]
0.408825
0.497103

0.000000
0.529329
0.470258

0.000019 |
0.479661
0.479680

0.000000 |
0.479781
0.471158

0.000136
0.481341
0.481359

0.000035
0.496627

0.497296

(A.75)

(A.76)

(A.77)

(A.78)

(A.79)



F 072407 =

P072408 =

P072409 =

P0?2410 =

P072411 =

P072412 =

P070901 =

PO70903 =

[0.999845
0.000396
0.000396

[0.999969
0.000285
0.000272

[0.999993
0.000131
0.000131

[0.999552
0.000498
0.000485

[0.999982
0.001027
0.000996

0.000601

Lo.oooem

[0.999062
0.003801
0.003620

0.999687
0.001242
0.000189

0.000075
0.498335
0.490799

0.000015
0.520858
0.520857

0.000003
0.495935
0.520731

0.000227
0.498251
0.496759

0.000079 |
0.501268
0.508804

0.000015 |
0.478856
0.478871 |
0.000003
0.503933
0.479137

0.000221 |
0.501251

0-502756_1

$.0000090 0.000008

0.521480
0.521480

0.477492
0.477524

(0.999859 0.000071 0.000069

0.508594 0.490805
0.508593 0.490805

0.000019
0.523098
0.523099

0.00019¢6
(.492089
0.510737

146

0.000018 |
0.473101
0.473281
0.000117
0.506667

0.489073

(A.80)

(A.81)

(A.82)

(A.83)

(A.84)

(A.85)

The transition probabilities for the fully connected model that give the best fits to
F(m,n) for n = —10 dB are

(A.86)

(A.87)



PO?OQOS

POTOQOG

PUTOQO}'

PO?OQI?

P070914

-POTIDIS

PO?lOlT

P072405

0.000829
0.000817

[0.999881
0.001448
0.001438

[0.999905
0.001261
0.001074

[0.998757
0.000315
0.000309

[0.998472
0.000348
0.000339

[0.999958
0.000809
0.000781

[0.999947
0.001280
0.001270

[0.999826
0.001218

0.001295

0.999589  0.000229 0.000181

0.523365
0.481833

0.000068
0.503986
0.473038

0.000054
0.509412
0.497855

0.001242
0.434444
0.555178

0.001528
0.468339
0.532906

0.000022
0.521593
0.521591

0.000028
0.525332
0.525332

0.000124
0.522165
0.488179
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0.475805
0.517329

0.000049
0.494565
0.525523_
0.000040 |
0.489326
0.501070

-

0.000000
0.565240
0.444512

0.000000]
0.531312
0.466753

0.000020]
0.477597
0.477628

0.000024
0.473387
0.473398

0.000049 |
0.476615

0.510524

(A.88)

(A.89)

(A.90)

(A.91)

(A.93)

(A.94)



F 072406 =

F 072407 =

F 072408 =

Po72409 =

Pon-uo =

Pu72411 =

P072412 =

[0.999922
0.001843
0.001834

[0.999771
0.001072
0.001095

0.999887
0.003220

0.003220

[0.999961
0.004879
0.004760

[0.999438
0.000991
0.000959

[0.999980
0.001741

0.001720

0.999842
0.000738
0.000731

0.000055
0.497305
0.487497

0.000117
0.503332
0.482973

0.000058
0.517328
0.517329

0.000019
0.498104
0.492643

0.000303
0.515323
0.482155

0.000009
0.508977
0.504130

0.000022]
0.500851
0.510668

0.000111 |
0.495595
0.515931

0.000054 |
0.479451
0.479511

0.000019 ]
0.497017
0.502596

0.000258 |
0.483685
0.516886

0.000010 |
0.48928]

0.494 150 ]

0.000085 0.000072
0.496290 0.502971
0.501208 0.498061

(A.96)

(A.98)

{A.99)

(A.100)

(A.101)

(A.102)
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